Synthesis of Oxidation Resistant Core-shell Nanoscale Zero-valent Iron by Controlled Air Contact

공기접촉 제어를 통한 산화방지 Core-Shell 나노영가철의 제조

  • Ahn, Jun-Young (Department School of Civil & Environmental Engineering, Pusan National University) ;
  • Kim, Hong-Seok (Department School of Civil & Environmental Engineering, Pusan National University) ;
  • Hwang, In-Seong (Department School of Civil & Environmental Engineering, Pusan National University)
  • 안준영 (부산대학교 사회환경시스템공학과) ;
  • 김홍석 (부산대학교 사회환경시스템공학과) ;
  • 황인성 (부산대학교 사회환경시스템공학과)
  • Published : 2008.12.31

Abstract

Experimental studies were conducted to characterize the synthesized nanoscale zero-valent iron (NZVI) which is resistant to oxidation in the atmospheric environment. XRD, XPS, and TEM analyses revealed that the oxidation-resistant NZVI particles formed under various controlled air contact conditions (4, 8 and 12 mL/min) have shells with ${\sim}$5 nm thickness. The shells consist of magnetite (${Fe_3}{O_4}$) and maghemite (${\gamma}-{Fe_2}{O_3}$), predominantly. No substantial differences were found in the shell components and thickness among NZVI particles formed under the various air flow rates. On the other hand, shell was not detected in the TEM image of rapidly oxidized NZVI particles. NZVI particles synthesized under the various air flow rates showed similar TCE degradation performances ($k_{obs}$= 0.111, 0.102, and 0.086 $hr^{-1}$), which are equivalent to approximately 80% of those obtained by the fresh NZVI particles. TCE degradation efficiencies of the NZVI particles(fresh, controlled air contact and rapidly oxidized) were improved after equilibrating with water for one day, indicating that depassivation of the shells occurred. The performances of NZVI particles decreased to 90% and 50% of those of the fresh NZVI particles, when they were equilibrated with the atmosphere for a week and two months, respectively. The NZVI particles synthesized under the controlled air contact would have advantages over traditional NZVI particles in terms of practical application into the site, because of their inertness toward atmospheric oxygen.

본 연구는 대기중에서 안정한 나노크기 영가철을 제조한 후 그 특성을 평가하기 위해 수행되었다. XRD, XPS 분석을 통해 인위적으로 4, 8, 12 mL/min 유량의 공기 접촉을 통해 형성된 shell의 두께는 5 nm로 모두 유사한 것으로 확인되었고, shell의 성분은 magnetite(${Fe_3}{O_4}$), maghemite(${\gamma}-{Fe_2}{O_3}$)가 주성분임을 확인할 수 있었다. 4, 8, 12 mL/min의 접촉 공기 유량에 따른 shell의 명확한 성분 및 두께 변화는 확인할 수 없었다. 반면 대기 중에서 공기와 급속으로 접촉시킨 나노크기 영가철의 경우는 TEM 분석 결과 shell 층이 확인되지 않았다. 4, 8, 12 mL/min의 유량으로 공기 접촉된 나노크기 영가철의 TCE 분해능($k_{obs}$= 0.111, 0.102, and 0.086 $hr^{-1}$) 또한 큰 차이를 보이지 않았으며, fresh한 나노크기 영가철에 비해서는 약 80%의 분해효율을 나타내었다. Fresh한 나노크기 영가철 및 4 mL/min과 급속으로 공기 접촉시킨 나노크기 영가철을 물속에서 1일 동안 물과 접촉시킨 후 분해능을 평가한 실험에서는 공기 접촉 후 바로 분해 실험한 것 보다 분해능이 모두 향상되었다. 이는 물과의 반응을 통해 shell 층이 벗겨져 순수한 Fe(0)와 TCE의 접촉이 빨라져서 일어난 결과로 판단되어진다. 또한 각각 1주일과 2달간 대기 중에서 방치한 후 분해 실험한 결과 공기 접촉 후 바로 분해 실험한 결과와 비교해서 분해능이 90%와 50%로 감소하였다. 따라서 본 연구결과 일정 유량으로 공기 접촉 시킨 나노크기 영가철은 대기 중 산소에 안정하기 때문에 실제 현장 적용에 유리할 것으로 판단된다.

Keywords

References

  1. 김영훈, 2002, 팔라듐으로 코팅된 영가철을 이용한 염화페놀류의 환원적 분해, 한국폐기물학회지, 19(5), 623-629
  2. 고석오, 송호철, 김영훈, 2005, 용존가스 종류 및 화학적 조건별 영가철(Fe0)에 의한 6가크롬의 반응성 평가, 대한환경공학회지, 25(5B), 407-412
  3. 유경열, 옥용식, 양재의, 2007, 영가철(Zerovalent Iron)을 이용한 수용액 중 비소(v)의 불용화, 한국혼경농학회지, 26(3), 197-203 https://doi.org/10.5338/KJEA.2007.26.3.197
  4. 환경부, 2003, 2002 전국 지정폐기물의 발생 및 처리현황
  5. Alowitz, M.J. and Scherer, M.M., 2002, Kinetics of nitrate, Nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36, 299-306 https://doi.org/10.1021/es011000h
  6. Arnold, W.A. and Roberts, A.L., 2000, Pathway and kinetics of chlorinated ethylene and chlorinated acethylene reaction with Fe(0) particles, Environ. Sci. Technol., 34, 1794-1805 https://doi.org/10.1021/es990884q
  7. Blowes, D.W., Ptacek, C.J., Benner, S.G., and McRae, C.W.T., 2000, Treatment of inorganic contaminants using permeable reactive barriers, Contami. Hydrol., 45(1-2), 123-137 https://doi.org/10.1016/S0169-7722(00)00122-4
  8. Chen, S.S., Hsu, H.D., and Li, C.W., 2004, A new method to produce nanoscale iron for nitrate removal, Nanoparti. Res., 6, 639-647 https://doi.org/10.1007/s11051-004-6672-2
  9. Farrokhpay, S., 2004, Interaction of polymeric dispersants with Titania pigment particles, Ph.D. Dissertation, University of South Australia, p.174
  10. Keum, Y.S. and LI, Q.X., 2005, Reductive debromination of polybrominated diphenyl ethers by zerovalent iron, Environ. Sci. Technol., 39, 2280-2286 https://doi.org/10.1021/es048846g
  11. Kuhn, L.T., Bojesen, A., Timmermann, L., Nielsen, M.M., and Morup, S., 2002, Structural and magnetic properties of coreshell iron-iron oxide nanoparticles, J. Phys.: Condens. Matter, 14, 13551-13567 https://doi.org/10.1088/0953-8984/14/49/311
  12. Lee, Y.C., Kwon, T.S., Yang, J.S., and Yang, J.W., 2007, Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion, J. Hazard. Mater., 140, 340-345 https://doi.org/10.1016/j.jhazmat.2006.09.036
  13. Li, X.Q., Elliott, D.W., and Zhnag, W.X., 2006, Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and Engineering Aspects, Crit. Rev. Solid State and Mater. Sci, 31(4), 111-122 https://doi.org/10.1080/10408430601057611
  14. Li, X.Q. and Zhang, W.X., 2006, Iron nanoparticles: the coreshell structure and unique properties for Ni(II) sequestration, Langmuir, 22, 4638-4642 https://doi.org/10.1021/la060057k
  15. Li, X.Q. and Zhang, W.X., 2007, Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution x-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C., 111, 6939-6946 https://doi.org/10.1021/jp0702189
  16. Liu, Y. and Lowry., 2006, Effect of particle age (FeO Content) and solution pH on ZVI reactivity: $H_2$ evolution and TCE dechlorination, Environ. Sci. Technol., 40, 6085-6090 https://doi.org/10.1021/es060685o
  17. Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., and Lowry, G.V., 2005, TCE dechlorination rate, pathway, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39, 1338-1345 https://doi.org/10.1021/es049195r
  18. Martin, J.E., Herzing, A.A., Yan, W., Li, X.Q., Koel, B.E., Kiely, C.J., and Zhang, W.X., 2008, Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles, Langmuir, 24, 4329-4334 https://doi.org/10.1021/la703689k
  19. Nurmi, J.T., Tratny, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, J.C., and Driessen, M.D., 2005, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 15, 1221-1230
  20. Phenrat, T., Liu, Y., Kim, H. J., Saleh, N., Sirk, K., Tilton, R. D., and Lowry, G. V., 2007, Effect of adsorbed polyelectrolytes of TCE dechlorination and product distribution by Fe(0)/Fe-oxide nanoparticles, American Chemistry Society 233rd International Meeting, Mar. 25-29
  21. Sarathy, V., Nurmi, J.T., Tratnyek, P.G., Nurmi, J.T., Baer, D.R., Amonette, J.E., Chun, C.L., Penn, R.L., and Reardon, E.J., 2008, Aging of iron nanoparticles in aquesous solution: effects on structure and reactivity, J. Phys. Chem. C., 112, 2286-2293 https://doi.org/10.1021/jp0777418
  22. Signorini, L., Pasquini, L., and Savini, L., 2003, Size-dependent oxidation in iron/iron oxide core-shell nanoparticles, Phys. Rev. B, 68(19), 195-202
  23. Sohn, K.G., Kang, S.W., Ahn, S.Y., Woo, M.W., and Yang, S., 2006, Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation, Environ. Sci. Technol., 40, 5514-5519 https://doi.org/10.1021/es0525758
  24. Sun, Y., Li, X., Cao, J., Zhang, W., and Wang, H., 2006, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120, 47-56 https://doi.org/10.1016/j.cis.2006.03.001
  25. Sun, Y.P., Li, X.Q., Zhang, W.X., and Wang, H.P., 2007, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids Surf., A., 308, 60-66 https://doi.org/10.1016/j.colsurfa.2007.05.029
  26. Wang, C.B. and Zhang, W.X., 1997, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31(7) https://doi.org/10.1021/es950764s
  27. Xiong, Z., Zhao, D., and Pan, G., 2007, Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles, Water Research, 41, 3497-3505 https://doi.org/10.1016/j.watres.2007.05.049