Effects of Porosity and Water Content on Thermal Conductivity of Soils

토양의 공극률 및 함수비가 열전도도에 미치는 영향

  • Cha, Jang-Hwan (Department of Geoenvironmental Sciences, Kongju National University) ;
  • An, Sun-Joon (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Koo, Min-Ho (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Kim, Hyoung-Chan (Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Yoon-Ho (Korea Institute of Geoscience and Mineral Resources) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University)
  • Published : 2008.06.30

Abstract

This paper presents a comprehensive laboratory study that examines the effects of porosity, water content, density and grain size distribution on the thermal conductivity of soils which were sampled from 16 synoptic stations of Korea. The experimental results clearly demonstrate that porosity and water content are important parameters which strongly affect the thermal conductivity of soils. Soils with lower porosities and higher water contents have higher thermal conductivities. On the contrary, increase of the matrix density slightly increases the thermal conductivity, and grain size distribution hardly affects the thermal conductivity. Dry soils with the same porosity tend to have more scattered values of thermal conductivity than wet soils. Based on the experimental results, a multiple linear regression model and a nonlinear regression model, having two regression variables of porosity and water content, were presented to predict thermal conductivity. Both models show a high accuracy of prediction with $R^2$ values of 0.74 and 0.82, respectively. Thus, it is expected that the suggested empirical models can be used for predicting thermal conductivity of soils by measuring porosity and water content.

국내 16개 기상관측소에서 채취한 토양 시료에 대한 물성 실험을 통하여 토양의 공극률, 함수비, 밀도 및 입도 분포특성이 열전도도에 미치는 영향을 분석하였다. 상관성 분석결과 열전도도는 공극률이 증가함에 따라 감소하는 부의 상관성을 보이며 함수비가 증가함에 따라 증가하는 정의 상관성을 갖는다. 입도 분포 특성에 의한 열전도도의 변화는 미비하며 토양 입자 밀도가 클수록 열전도도가 다소 증가하는 경향을 보였다. 건조 토양의 경우 동일한 공극률에서도 열전도도의 차이가 크게 나타났다. 실험 자료를 이용하여 열전도도에 주된 영향을 미치는 공극률과 함수비를 변수로 하는 다중선형회귀모형 및 비선형회귀모형을 제시하였으며, 회귀모형의 결정계수는 각각 0.74 및 0.82로 높게 나타났다. 따라서 본 연구 결과는 공극률과 함수비를 측정하여 토양의 열전도도를 예측하는데 이용될 수 있다.

Keywords

References

  1. 구민호, 김용제, 서만철, 서명석, 2003, 온도 시계열자료를 이용한 국내 토양의 열확산계수 산정, 지질학회지, 39(3), 301-317
  2. 백성권, 안형준, 2004, 고소성 점토의 열전도 특성에 관한 연구, 대한토목학회논문집, 24(5c), 267-272
  3. 손병후, 신현준, 안형준, 2005, 열응답 시험과 변수평가 모델을 이용한 그라우트/토양혼합층의 열전도도 산정, 설비공학논문집, 17(2), 173-182
  4. 송윤호, 이영민, 2006, 지열에너지자원 개발, 활용 기술의 동향 및 전망, 한국신재생에너지학회 2006 추계학술대회 논문집, p. 20-23
  5. 한대석, 1991, 흙의 열전도율 산정법에 관하여, 한국지반공학회지, 7(3), 65-72
  6. Abu-Hamdeh, N.H., 2000, Effect of tillage treatments on soil thermal conductivity for some Jordanian clay loam and loam soils, Soil & Tillage Res., 56, 145-151 https://doi.org/10.1016/S0167-1987(00)00129-X
  7. Abu-Hamdeh, N.H. and Reeder, R.C., 2000, Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Am. J., 64, 1285-1290 https://doi.org/10.2136/sssaj2000.6441285x
  8. Adam, E.A. and Jones, P.J., 1995, Thermophysical properties of stabilised soil building blocks, Building and Env., 30(2), 245-253 https://doi.org/10.1016/0360-1323(94)00041-P
  9. Becker, B.R., Misra, A., and Fricke, B.A., 1992, Development of correlations for soil thermal conductivity, Int. Comm. Heat Mass Transfer, 19, 59-68 https://doi.org/10.1016/0735-1933(92)90064-O
  10. Cote, J. and Konrad, J., 2005, Thermal conductivity of basecourse materials, Can. Geotech. J., 42, 61-78 https://doi.org/10.1139/t04-081
  11. De Vries, D.A., 1963, Thermal properties of soils, In: van Wijk, W.R. (Ed.), Physics of Plant Environment, North-Holland, Amsterdam, 210-233
  12. IGSHPA, 2000, Closed-loop/geothermal heat pump systems : design and installation standards, p. 175
  13. Kersten, M.S., 1949, Laboratory research for the determination of the thermal properties of soils, Research laboratory Investigations, Engineering Experiment Station, Technical Report 23, University of Minnesota, Minneapolis
  14. Krishnaiah, S. and Singh, D.N., 2003, Determination of influence of various parameters on thermal properties of soils, Int. Comm. Heat Mass Transfer, 30(6), 861-870 https://doi.org/10.1016/S0735-1933(03)00134-9
  15. Lim, K., Lee, S., and Lee, C., 2007, An experimental study on the thermal performance of ground heat exchanger, Exp. Thermal and Fluid Sci., In Press
  16. Lipiec, J., Usowicz, B., and Ferrero, A., 2007, Impact of soil compaction and wetness on thermal properties of sloping vineyard soil, Int. J. of Heat and Mass Transfer, 50, 3837-3847 https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.008
  17. Lu, S., Ren, T., Gong, Y., and Horton, R., 2007, An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Sci. Soc. Am. J., 71, 8-14 https://doi.org/10.2136/sssaj2006.0041
  18. Naidu, A.D. and Singh, D.N., 2004, A generalized procedure for determining thermal resistivity of soils, Int. J. of Thermal Sci., 43, 43-51 https://doi.org/10.1016/S1290-0729(03)00103-0
  19. Ochsner, T.E., Horton, R., and Ren, T., 2001, A new perspective on soil thermal properties, Soil Sci. Soc. Am. J., 65, 1641-1647 https://doi.org/10.2136/sssaj2001.1641
  20. Overduin, P.P., Kane, D.L., and van Loon W.K., 2006, Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating, Cold Regions Sci. and Tech., 45, 8-22 https://doi.org/10.1016/j.coldregions.2005.12.003
  21. Presley, M.A. and Christensen, P.R., 1997, Thermal conductivity measurements of particulate materials : 2. Result, J. Geophy. Res., 102(E3), 6551-6566 https://doi.org/10.1029/96JE03303
  22. Singh, D.N. and Devid, K., 2000, Generalized relationships for estimating soil thermal resistivity, Exp. Thermal and Fluid Sci., 22, 133-143 https://doi.org/10.1016/S0894-1777(00)00020-0
  23. Tavman, I.H., 1996, Effectiv thermal conductivity of granular porous materials, Int. Comm. Heat Mass Transfer, 23(2), 169-176 https://doi.org/10.1016/0735-1933(96)00003-6
  24. Tarnawski, V.R., Leong, W.H., Gori, F., Buchan, G.D., and Sundberg, J., 2002, Inter-particle contact heat transfer in soil system at moderate temperatures, Int. J. Energy Res., 26, 1345-1358 https://doi.org/10.1002/er.853
  25. Usowicz, B., Lipiec, J., and Ferrero, A., 2006, Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity, Int. J. of Heat and Mass Transfer, 49, 5010-5017 https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.023
  26. VDI 4640, 2000, Thermal use of the underground; fundamentals, approvals, environmental aspects, Verein Deutscher Ingenieure, Dusseldorf, 157