Hexagonal to Cubic Phase Transition in the $D_2O$-Induced Reverse Micellar Solution of a PEO-b-PPO-b-PEO Block Copolymer

  • Kim, Do-Hyun (Department of Polymer Science and Engineering, Inha University) ;
  • Ko, Yoon-Soo (Department of Polymer Science and Engineering, Inha University) ;
  • Kwon, Yong-Ku (Department of Polymer Science and Engineering, Inha University)
  • Published : 2008.01.31

Abstract

The morphology of the $D_2O$-induced reverse micellar structure of an amphiphilic block copolymer of poly( ethylene oxide )-b-poly(propylene oxide )-b-poly( ethylene oxide )($EO_{76}PO_{29}EO_{76}$) was investigated in hydrophobic media by small angle neutron scattering (SANS). Increasing $D_2O$ in the styrene/divinylbenzene solution of $EO_{76}PO_{29}EO_{76}$ led to a change in morphology of the reverse micelles from a short range ordered molecular aggregate to a hexagonally arranged micelle, and further to a spherical micelle.

Keywords

References

  1. A. Corma, M. T. Navarro, and J. PZrez-Pariente, Chem. Commun., 147 (1994).
  2. H. Kosslick, G. Lischke, G. Walther, W. Storek, A. Martin, and R. Fricke, Microporous Mater., 9, 13 (1997). https://doi.org/10.1016/S0927-6513(96)00087-9
  3. O. N. Le and R. T. Thomson, U.S. Patent 5 232 580 (1993).
  4. B. Sellergren, M. Lepisto, and K. Mosbach, J. Am. Chem. Soc., 110, 5853 (1988). https://doi.org/10.1021/ja00225a041
  5. F. H. Arnold, P. Dhah, D. Shnec, and S. Plunkett, U.S. Patent 91-649470 (1992).
  6. K. Dabulis and A. M. Klibanov, Biotechnol. Bioeng., 39, 176 (1992). https://doi.org/10.1002/bit.260390209
  7. G. Viatakis, L. I. Andersson, R. Mueller, and K. Mosbach, Nature, 361, 645 (1993). https://doi.org/10.1038/361645a0
  8. J. Damen and D. C. Neckers, J. Am. Chem. Soc., 102, 3265 (1980). https://doi.org/10.1021/ja00529a073
  9. B. Krause, H. J. P. Sijbesma, P. Munuklu, N. F. A. van der Vegt, and M. Wessling, Macromolecules, 34, 8792 (2001). https://doi.org/10.1021/ma010854j
  10. B. Krause, K. Diekmann, N. F. A. van der Vegt, and M. Wessling, Macromolecules, 35, 1738 (2002). https://doi.org/10.1021/ma011672s
  11. C. R. Martin, Chem. Mater., 8, 1739 (1996). https://doi.org/10.1021/cm960166s
  12. G. Wulff, Chem. Rev., 102, 1 (2002).
  13. L. R. Dai, T. W. Wang, L. T. Bu, and G. Chen, Colloid Surface A, 181, 151 (2001). https://doi.org/10.1016/S0927-7757(00)00791-3
  14. K. Mortensen, Colloid Surface A, 183-185, 277 (2001). https://doi.org/10.1016/S0927-7757(01)00546-5
  15. K.-W. Kwon, M. J. Park, J. Hwang, and K. H. Char, Polym. J., 33, 404 (2001). https://doi.org/10.1295/polymj.33.404
  16. P. M. Lipic, F. S. Bates, and M. A. Hillmyer, J. Am. Chem. Soc., 120, 8963 (1998). https://doi.org/10.1021/ja981544s
  17. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998). https://doi.org/10.1126/science.279.5350.548
  18. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  19. J. S. Beck, J. C. Vartuli, W. J. Roth, and M. E. Leonowicz, J. Am. Chem. Soc., 114, 10834 (1992). https://doi.org/10.1021/ja00053a020
  20. J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G. D. Stucky, and J. Y. Ying, Langmuir, 16, 8291 (2000). https://doi.org/10.1021/la000660h
  21. C. Guo, H.-Z. Liu, and J.-Y. Chen, Colloid Surface A, 175, 193 (2000). https://doi.org/10.1016/S0927-7757(00)00457-X