DOI QR코드

DOI QR Code

Biomass gasification in internal circulating fluidized beds: a thermodynamic predictive tool

  • Miccio, Francesco (European Commission, Joint Research Center, Institute for Energy JRC/IE) ;
  • Svoboda, Karel (European Commission, Joint Research Center, Institute for Energy JRC/IE) ;
  • Schosger, Jean-Pierre (European Commission, Joint Research Center, Institute for Energy JRC/IE) ;
  • Baxter, David (European Commission, Joint Research Center, Institute for Energy JRC/IE)
  • Published : 2008.08.01

Abstract

The paper deals with a high efficiency process for biomass gasification based on the concept of the internal circulating fluidized bed (ICFB). A modeling tool has been developed for the prediction of theoretical values for the main species in a syngas produced by ICFB gasification. A thermodynamic sub-model has been utilized and integrated with a simplified lumped model of the gasifier. The model predicts H2 concentration up to 61% on water free basis. The comparison with calculations for one stage gasification demonstrates ICFB process is preferable, no dilution with inert gas occurring. Among the studied variables, the steam/fuel ratio and the fuel moisture exert the largest influence on the hydrogen yield with percentage changes up to 15% in the explored range of the variables.

Keywords

References

  1. European Commission, Green paper. Towards a european strategy for the security of energy supply, Office for Official Publications of the European Communities L-2985 Luxembourg, ISBN 92-894- 0319-5 (2001)
  2. A. V. Bridgewater, Fuel, 74, 631 (1995) https://doi.org/10.1016/0016-2361(95)00001-L
  3. K.V. Lobachov and H. J. Richter, Energy Convers. Mgmt., 39, 1931 (1998) https://doi.org/10.1016/S0196-8904(98)00077-6
  4. U. Arena and A. Cammarota, Proceedings of 14th FBC Conference, Vancouver, 433 (1997)
  5. F. Miccio, O. Moersch, H. Spliethoff and K. R.G. Hein, Proceedings of 15th FBC Conference, Savannah, 108 (1999)
  6. M. K. Ko, W.Y. Lee, S. B. Kim, K.W. Lee and H. S. Chun, Korean J. Chem. Eng., 18, 961 (2001) https://doi.org/10.1007/BF02705626
  7. L. Devi, K. J. Ptasinski and F. J. J.G. Janssen, Biomass & Bioenergy, 24, 125 (2003) https://doi.org/10.1016/S0961-9534(02)00102-2
  8. R. Chirone, L. Massimilla and P. Salatino, Prog. Energy Combust. Sci., 17, 297 (1991) https://doi.org/10.1016/0360-1285(91)90006-9
  9. F. Miccio, O. Moersch, H. Spliethoff and K. R.G. Hein, Fuel, 78, 1473 (1999) https://doi.org/10.1016/S0016-2361(99)00044-7
  10. H. Hofbauer, G. Veronik, T. Fleck, R. Rauch, H. Mackinger and E. Fercher, Proceedings of developments in thermochemical biomass conversion, Banff, 2, 1016 (1997)
  11. H. Hofbauer, Proceedings of 19th FBC Conference, Vienna, CD, invited lecture (2006)
  12. F. Miccio, Korean J. Chem. Eng., 21, 404 (2004) https://doi.org/10.1007/BF02705428
  13. F. Miccio, K. Svoboda, J. P. Schosger and D. Baxter, Proceedings of 19th FBC Conference, Vienna, CD, paper 58, (2006)
  14. S. Gordon and B. J. McBride, NASA report, ref. pub. 1311 (1994)
  15. N. M. Laurendeau, Prog. Energy Combust. Sci., 4, 221 (1978) https://doi.org/10.1016/0360-1285(78)90008-4
  16. D. E. Daugaard and R. C. Brown, Energy & Fuels, 17, 934 (2003) https://doi.org/10.1021/ef020260x
  17. D. Kunii and O. Levenspiel, Fluidization engineering, Butterworth-Heinemann, Boston, 61 (1991)