Oxidative Stress and Cell Dysfunction in Diabetes: Role of ROS Produced by Mitochondria and NAD(P)H Oxidase

당뇨병과 산화 스트레스: 미토콘드리아 및 NAD(P)H Oxidase에 의한 ROS의 생성과 역할

Kim, Sang-Soo;Son, Seok-Man
김상수;손석만

  • Published : 2008.10.01

Abstract

Oxidative stress has been considered to be a major contributor to the pathogenesis of the diabetic macrovascular and microvascular complications. In the absence of an appropriate antioxidant defense mechanism, increased oxidative stress leads to the activation of stress-sensitive intracellular signaling pathways and the formation of gene products that cause damage and contribute to the late complications of diabetes. The source of reactive oxygen species (ROS) in the pancreatic beta cells and insulin sensitive cells has postulated to be the mitochondrial electron transport chain. NAD(P)H oxidase-dependent ROS production is also important as the source both in pancreatic beta cells and other cells. NAD(P)H oxidase mediated ROS can alter parameters of signal transduction, insulin secretion, insulin action, cell proliferation and cell death. Additionally, oxidative stress as the pathogenic mechanism linking insulin resistance with dysfunction of both pancreatic beta cells and endothelial cells, eventually leads to diabetes and its complications. Further investigation of the mechanisms and its therapeutic interventions based on focusing NAD(P)H oxidase associated ROS production in the islet cells and other islet cells are needed. (KOREAN DIABETES J 32:389-398, 2008)

Keywords

References

  1. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the developmentand progression of long-term complication in insulin-dependent diabetes mellitus. N Engl J Med 329:977-86, 1993 https://doi.org/10.1056/NEJM199309303291401
  2. UK Prospective Diabetes Study Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837-53, 1998 https://doi.org/10.1016/S0140-6736(98)07019-6
  3. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P: Myocardial cell death in human diabetes. Circ Res 87:1123-32, 2000 https://doi.org/10.1161/01.RES.87.12.1123
  4. Hunt JV, Dean RT, Wolff SP: Hydroxy radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205-12, 1988 https://doi.org/10.1042/bj2560205
  5. Schmidt AM, Hori O, Brett J, Yan SD, Wautler JL, Stern D: Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscle Thromb Vasc Biol 14: 1521-8, 1994 https://doi.org/10.1161/01.ATV.14.10.1521
  6. Evans JL, Goldfine ID, Maddux BA, Grodsky GM: Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599-622, 2002 https://doi.org/10.1210/er.2001-0039
  7. Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol 552:335-44, 2003 https://doi.org/10.1113/jphysiol.2003.049478
  8. Fridlyand LE, Philipson LH: Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches. Ann N Y Acad Sci 1066:136-51, 2005 https://doi.org/10.1196/annals.1363.019
  9. Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H: Increased glucose uptake promotes oxidative stress and PKC-$\delta$ activation in adipocytes of obese, insulin resistant mice. Am J Physiol Endocrinol Metab 285:E295-302, 2003
  10. Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615-25, 2005 https://doi.org/10.2337/diabetes.54.6.1615
  11. Haber EP, Procopio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R: New insights into fatty acid modulation of pancreatic $\beta$-cell function. Int Rev Cytol 248:1-41, 2006
  12. Griendling KK, FitzGerald GA: Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108:2034-40, 2003 https://doi.org/10.1161/01.CIR.0000093661.90582.c4
  13. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H: High glucose level and fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939-45, 2000 https://doi.org/10.2337/diabetes.49.11.1939
  14. Son SM, Whalin MK, Harrison DG, Griendling KK: Oxidative Stress and diabetic vascular complications. Curr Diab Rep 4:247-52, 2004 https://doi.org/10.1007/s11892-004-0075-8
  15. Kiuchi K, Nejima J, Takano T, Ohta M, Hashimoto M: Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart 85:87-91, 2001 https://doi.org/10.1136/heart.85.1.87
  16. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM: Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025-30, 1998 https://doi.org/10.1038/2012
  17. Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK: Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells FASEB J 17:417-25, 2003 https://doi.org/10.1096/fj.02-0722com
  18. Wauters M, Considine RV, Yudkin JS, Peiffer F, De Leeuw I, Van Gaal LF: Leptin levels in type 2 diabetes: associations with measures of insulin resistance and insulin secretion. Horm Metab Res 35:92-6, 2003 https://doi.org/10.1055/s-2003-39054
  19. Bouloumie A, Marumo T, Lafontan M, Busse R: Leptin induces oxidative stress in human endothelial cells. FASEB J 13:1231-8, 1999 https://doi.org/10.1096/fasebj.13.10.1231
  20. Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785-9, 1963
  21. Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P: On the mechanism of fatty acid-induced protein transport by mitochondrial uncoupling protein. J Biol Chem 271:2615-20, 1996 https://doi.org/10.1074/jbc.271.5.2615
  22. Jaburek M, Varecha M, Gimeno RE, Dembski M, Jezek P, Zhang M, Burn P, Tartaglia LA, Garlid KD: Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem 274: 26003-7, 1999 https://doi.org/10.1074/jbc.274.37.26003
  23. Korshunov SS, Skulachev VP, Starkov AA: High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15-8, 1997 https://doi.org/10.1016/S0014-5793(97)01159-9
  24. Babior BM: NADPH oxidase. Curr Opin Immunol 16:42-7, 2004 https://doi.org/10.1016/j.coi.2003.12.001
  25. Lyle AN, Griendling KK: Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology 21:269-80, 2006 https://doi.org/10.1152/physiol.00004.2006
  26. Rask-Madsen C, King GL: Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol 25:487-96, 2005 https://doi.org/10.1161/01.ATV.0000155325.41507.e0
  27. Nakayama M, Inoguchi T, Sonta T, Maeda Y, Sasaki S, Sawada F, Tsubouchi H, Sonoda N, Kobayashi K, Sumimoto H, Nawata H: Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun 332:927-33, 2005 https://doi.org/10.1016/j.bbrc.2005.05.065
  28. Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR: Pancreatic $\beta$-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52:1457-63, 2003 https://doi.org/10.2337/diabetes.52.6.1457
  29. Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR: Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal $\beta$ cell line. Diabetologia 50:359-69, 2007 https://doi.org/10.1007/s00125-006-0462-6
  30. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, Krause KH: NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406:105-14, 2007 https://doi.org/10.1042/BJ20061903
  31. Irani K: Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87:179-83, 2000 https://doi.org/10.1161/01.RES.87.3.179
  32. Lo YY, Wong JM, Cruz TF: Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 271:15703-7, 1996 https://doi.org/10.1074/jbc.271.26.15703
  33. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84, 2007 https://doi.org/10.1016/j.biocel.2006.07.001
  34. Bedard K, Krause KH: The NOX family of ROSgenerating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245-313, 2007 https://doi.org/10.1152/physrev.00044.2005
  35. Schoonbroodt S, Piette J: Oxidative stress interference with the nuclear factor-$\kappa$ B activation pathways. Biochem Pharmacol 60:1075-83, 2000 https://doi.org/10.1016/S0006-2952(00)00371-3
  36. Taniyama Y, Hitomi H, Shah A, Alexander RW, Griendling KK: Mechanisms of reactive oxygen species-dependent downregulation of insulin receptor substrate-1 by angiotensin II. Arterioscler Thromb Vasc Biol 25:1142-7, 2005 https://doi.org/10.1161/01.ATV.0000164313.17167.df
  37. Newsholme P, Brennan L, Bender K: Amino acid metabolism, $\beta$-cell function, and diabetes. Diabetes 55(Suppl 2):S39-47, 2006 https://doi.org/10.2337/db06-S006
  38. Newsholme P, Keane D, Welters HJ, Morgan NG: Life and death decisions of the pancreatic $\beta$-cell: the role of fatty acids. Clin Sci (Lond) 112:27-42, 2007 https://doi.org/10.1042/CS20060115
  39. Kahn SE: The relative contributions of insulin resistance and $\beta$-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3-19, 2003 https://doi.org/10.1007/s00125-003-1190-9
  40. Yu JH, Kim KH, Kim H: Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci 1090:292-7, 2006 https://doi.org/10.1196/annals.1378.031
  41. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R: Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9-24, 2007 https://doi.org/10.1113/jphysiol.2009.184598
  42. McQuaid TS, Saleh MC, Joseph JW, Gyulkhandanyan A, Manning-Fox JE, MacLellan JD, Wheeler MB, Chan CB: cAMP-mediated signaling normalizes glucose -stimulated insulin secretion in uncoupling protein-2 overexpressing $\beta$-cells. J Endocrinol 190:669-80, 2006 https://doi.org/10.1677/joe.1.06723
  43. Chan CB, Kashemsant N: Regulation of insulin secretion by uncoupling protein. Biochem Soc Trans 34:802-5, 2006 https://doi.org/10.1042/BST0340802
  44. Saleh MC, Wheeler MB, Chan CB: Endogenous islet uncoupling protein-2 expression and loss of glucose homeostasis in ob/ob mice. J Endocrinol 190:659-67, 2006 https://doi.org/10.1677/joe.1.06715
  45. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y: Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic $\beta$-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 38:782-93, 2006 https://doi.org/10.1016/j.biocel.2006.01.004
  46. Paolisso G, Giuglianoc D: Oxidative stress and insulin action: Is there a relationship? Diabetologia 39: 357-63, 1996 https://doi.org/10.1007/BF00418354
  47. Cheatham B, Kahn CR: Insulin action and the insulin signaling network. Endocr Rev 16:117-42, 1995
  48. Chen R, Kim O, Yang J: Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 276:31858-62, 2001 https://doi.org/10.1074/jbc.C100271200
  49. Sykiotis GP, Papavassiliou AG: Serine phosphorylation of insulin receptor substrate-1; a novel target for the reversal of insulin resistance. Mol Endocrinol 15: 1864-9, 2001 https://doi.org/10.1210/me.15.11.1864
  50. Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA: Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199-11, 2003 https://doi.org/10.1074/jbc.M209153200
  51. Hirata AE, Alvarez-Rojas F, Carvalheira JB, Carvalho CR, Dolnikoff MS, Abdalla Saad MJ: Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissue of MSG-rats. Life Sci 73: 1369-81, 2003 https://doi.org/10.1016/S0024-3205(03)00477-6
  52. De Fea K, Roth RA: Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36:12939-47, 1997 https://doi.org/10.1021/bi971157f
  53. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF: Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531-7, 2002 https://doi.org/10.1074/jbc.M101521200
  54. Pederson TM, Kramer DL, Rondinone CM: Serine/ threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 50:24-31, 2001 https://doi.org/10.2337/diabetes.50.1.24
  55. Gual P, Le Marchand-Brustel Y, Tanti JF: Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99-109, 2005 https://doi.org/10.1016/j.biochi.2004.10.019
  56. Bloch-Damti A, Potashnik R, Gual P, Le Marchand-Brustel Y, Tanti JF, Rudich A, Bashan N: Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetologia 49:2463-73, 2006 https://doi.org/10.1007/s00125-006-0349-6
  57. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC: Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 277:30010-8, 2002 https://doi.org/10.1074/jbc.M202066200
  58. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS: A central role for JNK in obesity and insulin resistance. Nature 420:333-6, 2002 https://doi.org/10.1038/nature01137
  59. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M: Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 279:45803-9, 2004 https://doi.org/10.1074/jbc.M406963200
  60. Dey D, Mukherjee M, Basu D, Datta M, Roy SS, Bandyopadhyay A, Bhattacharya S: Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: interplay of PKC isoforms therein. Cell Physiol Biochem 16:217-28, 2005 https://doi.org/10.1159/000089847
  61. Greene MW, Ruhoff MS, Roth RA, Kim JA, Quon MJ, Krause JA: PKC$\delta$-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function. Biochem Biophys Res Commun 349:976-86, 2006 https://doi.org/10.1016/j.bbrc.2006.08.158
  62. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ & Ye J: Serine phosphorylation of insulin receptor substrate 1 by inhibitor $\kappa$ B kinase complex. J Biol Chem 277:48115-21, 2002 https://doi.org/10.1074/jbc.M209459200