Temperature-Dependent Effects of Pollutants on Biological Denitrification Process for Treating Cokes Wastewater

코크스폐수의 생물학적 탈질공정에 대한 독성물질의 온도에 따른 영향

  • Kim, Young Mo (School of Environmental Science and Engineering, Department of Chemical Engineering, Advanced Environmental Biotechnology, Research Center, POSTECH) ;
  • Park, Donghee (School of Environmental Science and Engineering, Department of Chemical Engineering, Advanced Environmental Biotechnology, Research Center, POSTECH) ;
  • Ahn, Chi Kyu (School of Environmental Science and Engineering, Department of Chemical Engineering, Advanced Environmental Biotechnology, Research Center, POSTECH) ;
  • Lee, Min Woo (School of Environmental Science and Engineering, Department of Chemical Engineering, Advanced Environmental Biotechnology, Research Center, POSTECH) ;
  • Park, Jong Moon (School of Environmental Science and Engineering, Department of Chemical Engineering, Advanced Environmental Biotechnology, Research Center, POSTECH)
  • 김영모 (포항공과대학교 환경공학부 화학공학과 차세대바이오환경기술연구센터) ;
  • 박동희 (포항공과대학교 환경공학부 화학공학과 차세대바이오환경기술연구센터) ;
  • 안치규 (포항공과대학교 환경공학부 화학공학과 차세대바이오환경기술연구센터) ;
  • 이민우 (포항공과대학교 환경공학부 화학공학과 차세대바이오환경기술연구센터) ;
  • 박종문 (포항공과대학교 환경공학부 화학공학과 차세대바이오환경기술연구센터)
  • Received : 2008.06.28
  • Accepted : 2008.08.17
  • Published : 2008.12.31

Abstract

Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of pollutants, such as phenol, ammonia, thiocyanate and cyanides. Although biological pre-denitrification process has been used to treat this wastewater in Korea, unexpected failure in nitrogen removal occasionally occurs during summer season. In this study, therefore, we examined inhibitory effects of phenol, ammonia, thiocyanate, ferric cyanide and free cyanide on biological denitrification according to temperature variation ($20{\sim}38^{\circ}C$). Batch experiments showed that denitrification rate was faster in summer ($38^{\circ}C$) than other seasons, and removal rates of pollutants increased with increasing temperature. Phenol, ammonia, thiocyanate and ferric cyanide did not inhibit denitrification even at its high concentration (200 mg/L). However free cyanide above 0.5 mg/L seriously inhibited the bilolgical denitrification reaction. Inhibitory effect of these pollutants was reduced with increasing temperature.

코크스폐수는 페놀, 암모니아, 황화시안, 시안화합물과 같은 오염물질들을 고농도로 함유하고 있는 유독성 산업폐수이다. 국내에서는 이 폐수를 처리하기 위해 생물학적 전탈질공정(biological pre-denitrification process)을 주로 사용하고 있다. 그러나 원인을 알 수 없는 이유로 질소제거효율이 급격히 떨어지는 문제가 발생하고 있으며, 여름철에 더 실공정이 불안정해진다. 따라서 이번 연구에서는 코크스폐수가 가장 먼저 유입되는 탈질조를 대상으로 폐수에 함유된 페놀, 암모니아, 황화시안, 철-시안, 프리시안이 온도변화에($20{\sim}38^{\circ}C$)에 따라 탈질조 슬러지에 어떠한 영향을 미치는지 회분식 탈질실험을 통해 살펴 보았다. 그 결과 탈질반응은 여름철 실 공정의 운전온도($38^{\circ}C$)에서 최적을 보였으며, 오염물질들의 분해속도도 온도가 증가할수록 빨라졌다. 페놀, 암모니아, 황화시안, 철-시안은 200 mg/L 이하의 농도에서는 탈질반응에 거의 영향을 주지 않았으나, 프리시안은 0.5 mg/L의 저농도에서도 탈질반응에 심각한 저해를 주었다. 한편, 오염물질의 독성효과는 온도가 증가할수록 감소하는 현상을 보였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단, 한국과학재단

References

  1. Kumar, M. S., Vaidya, A. N., Shivaraman, N. and Bal, A. S., 'Performance Evaluation of a Full-scale Coke Oven Waste Water Treatment Plant in an Integrated Steel Plant,' Ind. J. Environ. Health., 45, 29-38(2003)
  2. Kim, Y. M., Park, D., Lee, D. S. and Park, J. M., 'Instability of Biological Nitrogen Removal in a Cokes Wastewater Treatment Facility During Summer,' J. Hazard. Mater., 141(1), 27-32(2007) https://doi.org/10.1016/j.jhazmat.2006.06.074
  3. Zhang, M., Tay, J. H., Qian, Y. and Gu, X. S., 'Coke Plant Wastewater Treatment by Fixed Biofilm System for COD and $NH_3-N$ Removal,' Water Res., 32, 519-527(1998) https://doi.org/10.1016/S0043-1354(97)00231-5
  4. Ning, P., Bart, H.-J., Jiang, Y., Haan, A. and Tien, C., 'Treatment of Organic Pollutants in Coke Plant Wastewater by the Method of Ultrasonic Irradiation, Catalytic Oxidation and Activated Sludge,' Sep. Purif. Technol., 41, 133-139(2005) https://doi.org/10.1016/j.seppur.2004.02.004
  5. Li, Y. M., Gu, G. W., Zhao, J. F., Yu, H. Q., Qiu, Y. L. and Peng, Y. Z., 'Treatment of Coke-plant Wastewater by Biofilm Systems for Removal of Organic Compounds and Nitrogen,' Chemosphere, 52, 997-1005(2003) https://doi.org/10.1016/S0045-6535(03)00287-X
  6. Vazquez, I., Rodriguez, J., Maranon, E., Castrillon, L. and Fernandez, Y., 'Simultaneous Removal of Phenol, Ammonium and Thiocyanate from Coke Wastewater by Aerobic Biodegradation, ' J. Hazard. Mater., 137, 1773-1780(2006) https://doi.org/10.1016/j.jhazmat.2006.05.018
  7. Yun, Y. S., Lee, M. W., Park, J. M., Lee, C. I., Huh, J. S. and Chun, H. D., 'Reclamation of Wastewater from a Steel-making Plant Using an Airlift Submerged Biofilm Reactor,' J. Chem. Technol. Biotechnol., 73, 162-168(1998) https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2<162::AID-JCTB940>3.0.CO;2-P
  8. Lee, M. W. and Park, J. M., 'Biological Nitrogen Removal from Coke Plant Wastewater with External Carbon Addition,' Water Environ. Res., 70, 1090-1095(1998) https://doi.org/10.2175/106143098X123444
  9. Van Schie, P. M. and Young, L. Y., 'Isolation and Characterization of Phenol-degrading Denitrifying Bacteria,' Appl. Environ. Microbiol., 64, 2432-2438(1998)
  10. Jeong, Y. S. and Chung, J. S., 'Biodegradation of Thiocyanate in Biofilm Reactor Using Fluidized-carriers,' Process Biochem., 41, 701-707(2006) https://doi.org/10.1016/j.procbio.2005.09.004
  11. Chakraborty, S. and Veeramani, H., 'Anaerobic-anoxic-aerobic Sequential Degradation of Synthetic Wastewaters,' Applied Biochemistry and Biotechnology, 102-103, 443-451(2002) https://doi.org/10.1385/ABAB:102-103:1-6:443
  12. Melcer, H. and Nutt, S. G., 'The Application of Predenitrification Nitrification Technology for Trace Contaminant Control,' Wat. Sci. Tech., 17, 399-408(1985) https://doi.org/10.2166/wst.1985.0146
  13. Sarfaraz, S., Thomas, S., Tewari, U. K. and Iyengar, L., 'Anoxic treatment of Phenolic Wastewater in Sequencing Batch Reactor,' Water Res., 38, 965-971(2004) https://doi.org/10.1016/j.watres.2003.10.039
  14. Richards, D. J. and Shieh, W. K., 'Anoxic-oxic Activated-sludge Treatment of Cyanide and Phenols,' Biotechnol. Bioeng., 33, 32-38(1998) https://doi.org/10.1002/bit.260330106
  15. Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA(1998)
  16. Dawson, R. N. and Murphy, K. L., 'Temperature Dependency of Biological Denitrification,' Water Res., 6, 71-83(1972) https://doi.org/10.1016/0043-1354(72)90174-1
  17. Lewandowski, Z., 'Temperature Dependency of Biological Denitrification with Organic Materials Addition,' Water Res., 16, 19-22(1982) https://doi.org/10.1016/0043-1354(82)90048-3
  18. Wojciech, H. and Magdalena, P. J., 'Nitrate as Agent Selecting Anaerobic Phenol Degrading Microflora in Petroleum Refining Sediments,' Water Res., 34, 1354-1358(2000) https://doi.org/10.1016/S0043-1354(99)00250-X
  19. Fang, H. H. P. and Zhou, G. M., 'Interaction of Methanogens and Denitrifiers in Degradation of Phenols,' Journal of Environmental Engineering, 125(1), 57-63(1999) https://doi.org/10.1061/(ASCE)0733-9372(1999)125:1(57)
  20. Hanaki, K., Wantawin, C. and Ohgaki, S., 'Effects of the Activity of Heterotrophs on Nitrification in a Suspended-growth Reactor,' Water Res., 24, 289-296(1990) https://doi.org/10.1016/0043-1354(90)90003-O
  21. Kjeldsen, P., 'Behaviour of Cyanide in Soil and Groundwater: a Review,' Water Air Soil Pollut., 115, 279-307(1999) https://doi.org/10.1023/A:1005145324157
  22. Lewandowski, Z., 'Biological Denitrification in the Presence of Cyanide,' Water Res., 18(3), 289-297(1984) https://doi.org/10.1016/0043-1354(84)90102-7