Application of the Horner Plot Method in Thermal Response Test Interpretation

Horner plot을 이용한 열응답 실험 해석

Shim, Byoung-Ohan
심병완

  • Published : 2008.08.28

Abstract

The selection of TRT and its interpretation method are important to design an economical geothermal heat pump system because heat exchange rate of a borehole heat exchanger system highly depends on effective thermal conductivity of ground.Two thermal response tests (TRTs) are performed in a 200 m long vertical closed-loop borehole heat exchanger, and thermal conductivities are estimated with a conventional method using the line source theory, and the Horner plot method. The Horner plot method is applied to recovered circulation fluid temperatures during fluid circulation after power shut-in, and recovered ground temperatures were measured by a fiber optic temperature sensing method. The estimated thermal conductivity using the conventional method is 2.75W/m/K, and that using the Horner plot method is 2.87 W/m/K. The average effective thermal conductivity using the Horner plot method with fiber optic temperature sensing data is 2.88 W/m/K and the average core sample thermal conductivity measured in a lab is 2.90 W/m/K. By comparison of each results with core thermal conductivity data, three different interpretation methods show reliable results.

2회의 열응답 실험이 200 m 심도의 수직밀폐형 지중열교환기에서 실시되었으며, 일반적인 라인소스 모델과 Horner plot 방법을 이용하여 지반의 열전도도를 계산하였다. 본 연구에서는 일반적인 선형열원 방정식과 순환펌프 가동에 의한 회복되는 순환수 온도 자료를 이용한 Horner plot 방법 적용, 그리고 순환펌프 중지 후 광섬유온도 센서를 이용한 회복되는 지반의 온도를 이용한 Horner plot 방법을 적용하였다. 일반적인 선형열원 방정식에 의한 지중열교환기공의 평균 유효열전도도는 2.75 W/m/K이며, 그리고 히터를 중지 시킨 후 순환펌프만 계속 가동시켜 회복되는 자료의 Horner plot 방법을 적용하여 계산된 유효열전도도가 2.87 W/m/K이다. 광섬유 센서 온도 측정법을 이용한 Horner plot method 적용에서는 2.88 W/m/K의 평균유효열전도도와 심도별 유효열전도도를 나타내었으며 코어의 평균 열전도도는 2.90 W/m/K이다. 3가지 TRT 해석 결과를 코어 열전도도와 비교한 결과 각 해석 방법들이 적절한 신뢰성을 가지는 것으로 판단되었다. 지중열교환기 시스템의 열교환율은 유효열전도도에 따라 크게 달라지므로 지반의 특성 및 목적에 가장 적합한 열응답 실험 및 해석 방법을 선택하여 유효열전도도를 계산하는 것이 경제적인 시스템 설계에 중요하다고 판단된다.

Keywords

References

  1. 박정민, 김형찬, 이영민, 송무영, 2007, "경기도,강원도, 충청도 일대의 암석 열물성 특성 연구," 자원환경지질, Vol. 40, No. 6, pp. 761-769
  2. 손병후, 신현준, 박성구, 2005, "지중 열교환기 보어홀에서 의 유효 열전도도 및 열저항 산정," 대한설비공학회, Vol. 17, No. 8, pp. 695-704
  3. 손병후, 2007, "단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정," 설비공학논문집, Vol. 19, No. 7, pp. 512-520
  4. 심병완, 2005, "대수층 축열 에너지 (ATES) 시스템에서 지 하수 유동 영향에 의한 지반내 온도 분포 예측 시뮬레이 션," 한국지열에너지학회 논문집, 1권 1호, pp. 1-8.
  5. 심병완, 이영민, 김형찬, 송윤호, 2006, "지중열교환기 효율 분석을 위한 지반내 열적・수리적 특성 조사," 한국지구시스템공학회지, Vol. 43, No. 2, pp. 97-105
  6. 에너지관리공단 신.재생에너지센터, 2007, 신.재생에너지 RD&D 전략 2030, p. 258
  7. 이명택, 김영일, 김광호, 강병하, 2005, "동특성 시뮬레이션 을 통한 지하수 열원 열펌프 성능 분석," 대한설비공학 회 2005하계학술발표대회 논문집, pp. 1125-1130
  8. Busso, A., Georgiev, A., and Roth, P., 2003, "Underground thermal energy storage - First thermal response test in South Africa," RIO 3 - World Climate and Energy Event, Rio de Janeiro, Brazil, pp. 189-196
  9. Carslaw, H. S., and Jaeger, J. C., 1986, Conduction of heat in Solids, 2nd ed., Oxford University Press, p. 520
  10. Espinosa-Paredes, G., and Garcia-Gutierres, A., 2003, "Estimation of static formation temperatures in geothermal wells," Energy conversion & management, Vol. 44, pp. 1343-1355 https://doi.org/10.1016/S0196-8904(02)00117-6
  11. Forster, A., Schrötter, J., Merriam, D. F., and Blackwell, D. D., 1997, "Application of optical-fiber temperature logging-An example in a sedimentary environment," Geophysics, Vol. 62, No. 4, pp. 1107-1113 https://doi.org/10.1190/1.1444211
  12. Fujii, H., 2006, "Practice and interpretation of thermal response test, Lecture note: Geothermal heat pump system," Journal of Geothermal resources society of Japan, Vol. 28, No. 2, pp. 245-257
  13. Fujii, H., and Akibayashi, S., 2002, "Analysis of thermal response test of heat exchange wells in ground-coupled heat pump systems," 資源と素材, Vol. 118, pp. 75-80
  14. Gehlin, S., 1998, Thermal response test - In-situ measurements of thermal properties in hard rock, Lulea University of Technology, Sweden. p. 21
  15. Gehlin, S., 2002, Thermal response test - Method development and evaluation, Doctoral Thesis 2002:39, Lulea University of Technology, Sweden. p.43
  16. GroBwig, S., Hurtig, E., and Kühn, K., 1996, "Fibre optic temperature sensing: A new tool for temperature measurements in borehole," Geophysics, Vol. 61, No. 4, pp. 1065-1067 https://doi.org/10.1190/1.1444027
  17. Horner, D. R., 1951, Pressure build-up in wells, Proc. Third World Petroleum congress, The Hague, p. 503
  18. Hurtig, E., GroBwig, S., Jobmann, M., Kühn, K., and Marschall, P., 1994, "Fibre-optic temperature measurements in shallow boreholes: experimental application for fluid logging," Geothermics, Vol. 23, No. 4, pp. 355-364 https://doi.org/10.1016/0375-6505(94)90030-2
  19. Hurtig, E., GroBwig, S., and Kühn, K., 1996, "Fiber optic temperature sensing: application for subsurface and ground temperature measurements," Tectonophysics, Vol. 257, No. 1, pp. 101-109 https://doi.org/10.1016/0040-1951(95)00124-7
  20. Ingersoll, L. R., and Plass, H. J., 1948, "Theory of the ground pipe heat source for the heat pump, heatin, piping & air conditioning," July, pp. 199-122
  21. Sensornet Ltd, Sentinel DTS user manual, www.sensornet. co.uk, p. 102
  22. Signorelli, S., 2004, "Geoscientific investigations for the use of shallow low-enthalpy systems," Doctoral Thesis, ETH No. 15519, Swiss Federal Institute of Technology Zurich, Switzerland, p. 159
  23. Stober, I., and Bucher, K., 2005, "The upper continental crust, and aquifer and its fluid: hydarulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site," Geofluids, Vol. 5, pp. 8-19 https://doi.org/10.1111/j.1468-8123.2004.00106.x
  24. Stulc, P., 1995, "Return to thermal equilibrium of an intermittently drilled hole: theorgy and experiment," Tectonophysics, Vol. 241, pp. 35-45 https://doi.org/10.1016/0040-1951(94)00183-A
  25. Sung, WM., Ryou SS., Ra SH., and Kwon SI., 2001, "The Interpretation of DST Data for Donghae-1 Gas Field," Block VI-1, Korea, Korean Journal of Chemical Engineering, Vol.18, No.1, pp. 67-74 https://doi.org/10.1007/BF02707200
  26. VDI, 2000, Thermal use of the underground fundamentals, approvals, environmental aspects, VDI 4640, Part 1-Part 4
  27. Waples, D. W., and Pedersen, M. R., 2004, "Evaluation of Horner plot-corrected log-derived temperatures in the Danish Central Graben, North Sea," Natural Resources Research, Vol. 13, No. 4, pp. 223-227 https://doi.org/10.1007/s11053-004-0130-9
  28. Wisian, K. W., Blackwell, D. D., Bellani, S., Henfling, J. A., Normann, R. A., Lysne, P. C., Förster, A., and Schrötter, J., 1998, "Field comparison of conventional and new technology temperature logging systems," Geothermics, Vol. 27, No. 2, pp. 131-141 https://doi.org/10.1016/S0375-6505(97)10013-X