Selection and Physiological Characterization of Glyphosate-tolerant Zoysiagrass Mutants Derived from a Gamma Ray Irradiation

감마선 조사에 의한 glyphosate 제초제 저항성 한국 들잔디 돌연변이체의 선발과 저항성 계통의 생리적 특성

Lee, Hye-Jung;Lee, Geung-Joo;Kim, Dong-Sub;Kim, Jin-Beak;Ku, Ja-Hyeong;Kang, Si-Yong
이혜정;이긍주;김동섭;김진백;구자형;강시용

  • Published : 20081200

Abstract

This study was conducted to determine the successful in vitro and in vivo conditions for a mutant induction of zoysiagrass (Zoysia japonica), and to observe the physiological responses of the selected mutants resistant to a glyphosate herbicide. A mutation induction under in vitro conditions was found to be achievable when combined with the gamma ray in zoysiagrass (2 ㎎・L-1 2,4-D and 0.1 to 0.5 ㎎・L-1 BA with 50-70 Gy of a gamma ray). The electrolyte leakage (EL), malondealdehyde (MDA) and proline contents increased, while phyto pigments decreased with increasing glyphosate concentration, especially with 0.5-1.0% glyphosate level from 7 days after treatment. After the leaf blade of 100 M2 plants derived from a gamma ray treatment (300 Gy) was sprayed, three resistant and susceptible plants were selected and used to compare the physiological responses to a 0.5% glyphosate treatment. The EL was increased more in the susceptible plants than in the resistant mutants, while the MDA content was not evident statistically. The chlorophyll and carotenoid contents decreased in all the treated materials, with less reduction in the susceptible lines. The activity of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was about 1.5-fold higher in the resistant mutants, allowing them resistance to glyphosate blocking the synthesis of aromatic amino acids. In those selected resistant mutants, more extended days of green leaves were observed after the glyphosate treatment, which allows economic and environmental savings and provides with more flexible management options.

본 연구에서는 감마선 조사에 의한 들잔디 돌연변이체를 유기하기 위한 적정 조건을 확립하고 감마선에 의해 유도된 glyphosate 저항성 들잔디의 생리적 반응을 관찰하고자 하였다. 캘러스 돌연변이 유기를 위한 적정 방사선 선량은 50-70Gy 이며, 효율적인 캘러스 유도를 위해서는 2㎎・L-1 2,4-D와 0.1-0.5㎎・L-1 BA를 혼합하여 사용하는 것이 효과적이었다. 하지만 방사선과 glyphosate를 동시에 처리할 경우 재분화체로의 유기가 불가능하여 방사선이 처리(300Gy)된 들잔디 종자에서 우선 재분화체를 얻고, 종자수확을 통해 얻어진 100 M2 계통에 glyphosate를 처리한 후 돌연변이체를 선발하는 방법이 성공적으로 적용됨을 알 수 있었다. 감수성 계통들은 0.5% glyphosate 농도의 제초제 처리시에 세포 전해질 유출(electrolyte leakage)과 지질막의 과산화에 의한 malondealdehyde(MDA) 함량이 저항성 선발계통에 비해 높게 나타났다. 한편 glyphosate의 독성기작의 하나인 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS) 효소활성 저해 작용을 알아본 결과 저항성 계통에서 공통적으로 높은(1.5배 이상) EPSPS 활성을 확인할 수 있었다. 본 연구 결과 저항성 선발계통들은 높은 EPSPS 효소활성을 통해 방향족 아미노산의 원할하고 지속적인 합성과, 광합성 색소의 분해 작용에 대한 저항 기작을 통해 오랜 기간 동안(15일 이상) 건강하게 생존할 수 있었던 것으로 여겨진다. 따라서 본 실험을 통해 얻어진 glyphosate 저항성 계통들과 방법은 앞으로 유용한 제초제 저항성 돌연변이 품종개발 연구에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Alia, K., V.S.K. Prasad, and P. Pardhasaradhi. 1994. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39:45-47 https://doi.org/10.1016/0031-9422(94)00919-K
  2. Amrhein, N., B. Deus, P. Gehrke, and H.C. Steinrucken. 1980. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830-834 https://doi.org/10.1104/pp.66.5.830
  3. Bae, C.H., K. Tohyama, S.C. Lee, Y.P. Lim, H.I. Kim, P.S. Song, and H.Y. Lee. 2001. Efficient plant regernaeration using mature seed-derived callus in zoysiagrass (Zoysia japonica Steud.). Korean J. Plant Tissue Culture 28:61-67
  4. Bashir, F., Mahmooduzzafar, T.O. Siddiqi, and M. Iqbal. 2007. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide. Environ. Pollut. 147:94-100 https://doi.org/10.1016/j.envpol.2006.08.013
  5. Bayllis, A.D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manage. Sci. 56:299-308 https://doi.org/10.1002/(SICI)1526-4998(200004)56:4<299::AID-PS144>3.0.CO;2-K
  6. Beard, J.B. 1973. Turfgrass: Science and culture. Prentice-Hall, Englewood Cliffs, N.J
  7. Caroline, C. 2004. Glyphosate. J. Pest. Reform. 24:10-15
  8. Choi, J.S., B.J. Ahn, and G.M. Yang. 1997. Distribution of native zoysiagrasses (Zoysia spp.) in the south and west coastal regions of Korea and classification using morphological characteristics. J. Kor. Soc. Hort. Sci. 38:327-332
  9. Devine, M.D., S.O. Duke, and C. Fedtke. 1993. Physiology of herbicide action. Prentice-Hall, Englewood Cliffs, N.J
  10. Dhindsa, R.S. and W. Matowe. 1981. Drought tolerance in two mosses correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 32:79-91 https://doi.org/10.1093/jxb/32.1.79
  11. Foreman, M.H., R.J. Field, and R.D. Buick. 1987. The physiological basis for the protective action of abscisic acid against diclofop-methyl activity on Avena sativa L. Pest Manage. Sci. 23:51-57
  12. Geiger, D.R. and H.D. Bestman. 1990. Self-limitation of herbicide mobility by phytotoxic action. Weed Sci. 38:324-329
  13. Hartman, C.L., L. Lee, P.R. Day, and N.E. Tumer. 1994. Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology 12:919-923 https://doi.org/10.1038/nbt0994-919
  14. Halliwell, B. 1987. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplast. Chem. Phys. Lipids. 44:327-340 https://doi.org/10.1016/0009-3084(87)90056-9
  15. Hernandez, J.A., Z.A. Jimenez, P.M. Mullineaux, and F. Sevilla. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 23:853-862 https://doi.org/10.1046/j.1365-3040.2000.00602.x
  16. Konzak, C.F. 1984. Role of induced mutations, p.216-292. In: P.B. Vose and S.G. Blixt (eds). Crop breeding: A contemporary bases. Pergamon Press, Oxford, UK
  17. Kuk, I.Y., J.O. Guh, and S.U. Chon. 1997. Difference of protoporphyrin IX accumulation and antioxidative activity of wheat and barley by protoporphyrinogen oxidase-inhibiting herbicides. Kor. J. Crop. Sci. 42:79-88
  18. Kuznetsov, V. and N. Shevyakova. 1999. Proline under stress: biological role, metabolism and regulation. Russ. J. Plant Physiol. 46:274-287
  19. Lanzetta, P.A., L.J. Alvarez, P.S. Reinach, and O.A. Candia. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100:95-97 https://doi.org/10.1016/0003-2697(79)90115-5
  20. Lee, I.Y., J.E. Park, S.T. Lim, J.R. Cho, and E.S. Lim. 2002. Crop injury caused by herbicides. Kor. J. Weed Sci. 22: 178-184
  21. Lee, H.J., G.J. Lee, D.S. Kim, J.B. Kim, J.H. Ku, and S.-Y. Kang. 2008. Determination of the optimum dose range for a mutation induction of turfgrasses by a gamma-ray. Kor. Turfgrass Sci. 22:25-34
  22. Lee, S.H., N. Ahsan, K.W. Lee, D.H. Kim, D.G. Lee, S.S. Kwak, S.Y. Kwon, T.H. Kim, and B.H. Lee. 2007. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 164:1626-1638 https://doi.org/10.1016/j.jplph.2007.01.003
  23. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 148:350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  24. Lozano-Rodriguez, E., L.E. Hernandez, P. Boney, and R.O. Carpena-Ruiz. 1997. Distribution of cadmium in shoot and root tissues of maize and pea plants: Physiological disturbances. J. Exp. Bot. 48:123-128 https://doi.org/10.1093/jxb/48.1.123
  25. Luo, X.Y. and H. Matsumoto. 2002. Susceptibility of a broadleaved weed, Acanthospermum hispidum, to the grass herbicide fluazifop-butyl. Weed Biol. Management 2:98-103 https://doi.org/10.1046/j.1445-6664.2002.00053.x
  26. Meagher, T.R., F.C. Belanger, and P.R. Day. 2003. Using empirical data to model transgene dispersal. Phil. Trans. R. Soc. Lond. B. 358:1157-1162 https://doi.org/10.1098/rstb.2003.1293
  27. Murashige, T. and F. Skoog. 1962. A revise medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  28. Preston, C., J.A. Holtum, and S.B. Powles. 1991. Resistance to the herbicide paraquat and increased tolerance to photoinhibition are not correlated in several weed species. Plant Physiol. 96:314-318 https://doi.org/10.1104/pp.96.1.314
  29. Rodionov, V.S., C.A. Nyuppieva, and L.S. Zakharova. 1973. Changes in the galacto-and phospho-lipid content of potato leaves, exposed to low temperature. Fiziologiya Rastenii 20:525-531
  30. Sandhu, S., F. Altpetera, and A.R. Blountb. 2007. Apomictic bahiagrass expressing the bar gene is highly resistant to glufosinate under field conditions. Crop Sci. 47:1691-1697 https://doi.org/10.2135/cropsci2006.11.0699
  31. Schonbrunn, E., S. Eschenburg, W.A. Shuttleworth, J.V. Schloss, N. Amrhein, J.N. Evans, and W. Kabsch. 2001. Interaction of the herbicide glyphosate with its target enzyme 5- enolpyruvylshikimate-3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 98:1376-1380
  32. Sergiev, I.G., V.S. Alexieva, S.V. Ivanov, I.I. Moskova, and E.N. Karanov. 2006. The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pest. Biochem. Physiol. 85:139-146 https://doi.org/10.1016/j.pestbp.2006.01.001
  33. Steinrucken, H.C. and N. Amrhein. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:1207-1212 https://doi.org/10.1016/0006-291X(80)90547-1
  34. Toyama, K., C.H. Bae, J.G. Kang, Y.P. Lim, T. Adachi, K.Z. Riu, P.S. Song, and H.Y. Lee. 2003. Production of herbicidetolerant zoysiagrass by agrobacterium-mediated transformation. Mol. Cells 16:19-27
  35. Troll, W. and J. Lindsley. 1955. A Photometric method for the determination of proline. J. Biol. Chem. 215:655-660
  36. Yi, Y., D. Qiao, L. Bai, H. XU, Y. Li, X. Wand, and Y. Cao. 2007. Cloning, expression, and functional characterization of the Dunaliella salina 5-enolpyruvylshikimate-3-phosphate synthase gene in Escherichia coli. J. Microbiol. 45:153-157
  37. Zang, Y.X., S.B. Hong, D. Mrugesan, J.G. Lim, and D.H. Kim. 2006. Plant regeneration of turf-type common bermudagrass (Cynodon dactylon) via somatic embryogenesis from seedderived callus. Hort. Envion. Biotechnol. 47:217-221