Effect of Power Intensity on the Phenol and Chlorinated Compounds Mixture Solutions by Ultrasound

초음파로 페놀 분해 시 염소계화합물의 첨가와 음향 강도의 영향

  • Lim, Myunghee (Department of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Son, Younggyu (Department of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Yang, Jaekeun (Department of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Khim, Jeehyeong (Department of Civil, Environmental & Architectural Engineering, Korea University)
  • 임명희 (고려대학교 건축사회환경공학과) ;
  • 손영규 (고려대학교 건축사회환경공학과) ;
  • 양재근 (고려대학교 건축사회환경공학과) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Received : 2007.11.12
  • Accepted : 2008.01.08
  • Published : 2008.01.30

Abstract

Degradations of phenol and chlorinated compounds mixtures were studied with ultrasound of 20 kHz and 0.57, 1.14 W/mL. In presence of carbon tetrachloride (CT), degradation rate of phenol is faster than chloroform (CF), dichloromethane (DCM) and phenol solution. It is due to that CT generates of free chlorine (HOCl and $OCl^-$) from the sonochemical degradation and plays a role of hydrogen atom scavenger. CF and DCM are react with free chlorine, so amount of free chlorine is smaller than CT solution. The degradation rates of chlorinated compounds decreased with co-presence of phenol in the solution due to the distribution ultrasonic energy to both compounds. The measured chloride ion was lower than the theoretical concentration assuming complete degradation. This means not all the contaminants destructed went through complete degradation.

Keywords

References

  1. APHA (1998). Standard methods for the examination of water and wastewater, 20th edition
  2. Bhatnagar, A. and Cheung, H. M. (1994). Sonochemical Destruction of Chlorinated C1 and C2 Volatile Organic Compounds in Dilute Aqueous Solution. Environ. Sci. Technol., 28(8), pp. 1481-1486 https://doi.org/10.1021/es00057a016
  3. Chen, Y. and Smirniotis, P. (2002). Enhancement of Photocatalytic Degradation of Phenol and Chlorophenols by Ultrasound. Ind. Eng. Chem. Res., 41(24), pp. 5958-5965 https://doi.org/10.1021/ie020415o
  4. Drijver, D., Langenhove, H. V. and Beckers, M. (1999). Decomposition of phenol and trichloroethylene by the ultrasound, $H_2O_2$, CuO process. Wat. Res., 33(5), pp. 1187-1194 https://doi.org/10.1016/S0043-1354(98)00308-X
  5. Dzengel, J., Theurich, J. and Bahnemann, D. W. (1999). Formation of Nitroaromatic Compounds in Advanced Oxidation Processes-Photolysis versus Photocatalysis. Environ. Sci. Technol., 33(2), pp. 294-300 https://doi.org/10.1021/es980358j
  6. Entezari, M. H., Kruss, P. and Otson, R. (1997). The effect of frequency on sonochemical reactions III-dissociation of carbon disulfide. Ultrasonics Sonochemistry, 4, pp. 49-54 https://doi.org/10.1016/S1350-4177(96)00016-8
  7. Entezari, M. H., Petrier, C. and Devidal, P. (2003). Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrasonics Sonochemistry, 10, pp. 103-108 https://doi.org/10.1016/S1350-4177(02)00136-0
  8. Francony, A. and Petrier, C. (1996). Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies- 20 kHz and 500 kHz. Ultrasonics Sonochemistry, 3, pp. 77-83 https://doi.org/10.1016/1350-1477(96)00010-1
  9. Guo, Z., Gu, C., Zheng, Z., Feng, R., Jiang, F., Gao, G. and Zheng, Y. (2006). Sonodegradation of halomethane mixtures in chlorinated drinking water. Ultrasonics Sonochemistry, 13, pp. 487-492 https://doi.org/10.1016/j.ultsonch.2006.05.005
  10. Hua, I., Hochemer, R. H., Hoffmann, M. R. (1995). Sonochemical Degradation of p-Nitrophenol in a Parallel-plate nearfield acoustical processor. Environ. Sci. Technol., 29(11), pp. 2790-2796 https://doi.org/10.1021/es00011a014
  11. Hua, I. and Hoffmann, M. R. (1996). Kinetics and Mechanism of the Sonolytic Degradation of CCl4: Intermediates and Byproducts. Environ. Sci. Technol., 30(3), pp. 864-871 https://doi.org/10.1021/es9502942
  12. Hung, H. and Hoffmann, M. R. (1998). Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound. Environ. Sci. Technol., 32(19), pp. 3011-3016 https://doi.org/10.1021/es980273i
  13. Hung, H. and Hoffmann, M. R. (1999). Kinetics and Mechanism of the Sonolytic Degradation of Chlorinated Hydrocarbons Frequency Effects. J. Phys. Chem., 103(15), pp. 2734- 2739
  14. Jennings, B. H., Townsend, S. N. (1961). The sonochemical reactions of carbon tetrachloride and chloroform in aqueous suspension in an inert atmosphere. J. Phys. Chem., 65(9), pp. 1574-1579 https://doi.org/10.1021/j100905a025
  15. Mahamuni, N. N. and Pandit, A. B. (2006). Effect of additives on ultrasonic degradation of phenol. Ultrasonics Sonochemistry, 13, pp. 165-174 https://doi.org/10.1016/j.ultsonch.2005.01.004
  16. Mason, T. J. and Lorimer, J. P. (1988). Sonochemistry: Theory, applications and uses of ultrasound in chemistry, Ellis Horwood Limited
  17. Naffrechoux, E., Chanoux, S., Petrier, C. and Suptil, J. (2000). Sonochemical and photochemical oxidation of organic matter. Ultrasonics Sonochemistry, 7, pp. 255-259 https://doi.org/10.1016/S1350-4177(00)00054-7
  18. Orzechowska, G. E., Poziomek, E. J., Hodge, V. F. and Engelmann, W. H. (1995). Use of Sonochemistry in Monitoring Chlorinated Hydrocarbons in Water. Environ. Sci. Technol., 29(5), pp. 1373-1379 https://doi.org/10.1021/es00005a033
  19. Shemer, H. and Narkis, N. (2005). Sonochemical removal of trihalomethanes from aqueous solutions. Ultrasonics Sonochemistry, 12, pp. 495-499 https://doi.org/10.1016/j.ultsonch.2004.06.008
  20. Smith, B. A., Teel, A. L. and Watts, R. J. (2006). Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent. J. Contaminant Hydrology, 85, pp. 229-246 https://doi.org/10.1016/j.jconhyd.2006.02.002
  21. Wu, C., Liu, X., We, D., Fan, J. and Wang, L. (2001). Photosonochemical degradation of Phenol in water. Wat. Res., 35(16), pp. 3927-3933 https://doi.org/10.1016/S0043-1354(01)00133-6
  22. Zheng, W., Maurin, M. and Tarr, M. A. (2005). Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrasonics Sonochemistry, 12, pp. 313-317 https://doi.org/10.1016/j.ultsonch.2003.12.007