Protective Effects of Glucagon Like Peptide-1 on HIT-T15 $\beta$ Cell Apoptosis via ER Stress Induced by 2-deoxy-D-glucose

2-deoxy-D-glucose에 의해 유도된 소포체 스트레스에서 글루카곤양 펩티드-1의 HIT-T15 베타세포 사멸 보호효과

Kim, Ju-Young;Lee, Seong-Kyu;Baik, Haing-Woon;Lee, Ki-Ho;Kim, Hyun-Jin;Park, Kang-Seo;Kim, Byung-Joon
김주영;이성규;백행운;이기호;김현진;박강서;김병준

  • Published : 2008.12.01

Abstract

Background: The characteristic feature of pancreatic β cells is highly developed endoplasmic reticulum (ER) due to a heavy engagement in insulin secretion. The ER serves several important function, including post-translational modification, folding, and assembly of newly synthesized secretory proteins, and its proper function is essential to cell survival. Various stress conditions can interfere with ER function. Pancreatic β cells may be particularly vulnerable to ER stress that causes to impair insulin biosynthesis and β cell survival through apoptosis. Glucagon like peptide-1 (GLP-1) is a new drug for treatment of type 2 diabetes and has effects on stimulation of insulin secretion and β cell preservation. Also, it may have an antiapoptotic effect on β cells, but detailed mechanisms are not proven. Therefore, we investigated the protective mechanism of GLP-1 in β cells through ER stress response induced by 2-deoxy-D-glucose (2DG). Methods: For induction of the ER stress, HIT-T15 cells (hamster β cell line) were treated with 2DG (10 mM). Apoptosis was evaluated with MTT assay, hoechst 33342 staining and Annexin/PI flow cytometry. Expression of ER stress-related molecules was determined by real-time PCR or western blot. For blocking ER stress, we pretreated HIT-T15 cells with exendin-4 (Ex-4; GLP-1 receptor agonist) for 1 hour before stress induction. Results: After induction with ER stress (2DG), β cells were lost by apoptosis. We found that Ex-4 had a protective effect through ER stress related molecules (GRP78, GRP94, XBP-1, eIF2α, CHOP) modulation. Also, Ex-4 recovered the expression of insulin2 mRNA in β cells. Conclusion: These results suggest that GLP-1 may protect β cells apoptosis through ER stress modulation. (KOREAN DIABETES J 32:477-487, 2008)

연구배경: 췌장 베타세포는 인슐린 분비 작용으로 인해 소포체가 잘 발달되어 있다는 것이 중요한 특징 중의 하나 이다. 소포체는 번역 후 수정, 폴딩, 새롭게 합성된 분비 단 백질의 재배열 등 중요한 기능을 담당하고, 세포의 생존에 있어서도 중요한 역할을 담당한다. 소포체는 다양한 생리, 병리학적 자극에 의한 스트레스를 받게 되는데 이를 소포체 스트레스라 하고, 이러한 소포체 스트레스에 베타세포는 취 약하며, 소포체 스트레스에 의해 베타세포는 인슐린의 합성 및 생존에 문제가 발생하여 세포 자연사를 일으킨다. 글루 카곤양 펩티드-1 (GLP-1)은 제2형 당뇨병의 새로운 치료제 로 인슐린 분비와 베타세포 증식의 촉진한다고 알려져 있다. 또한 이는 베타세포의 사멸에 있어 보호효과를 가지지만, 이에 대한 자세한 기전은 밝혀지지 않았다. 따라서 2-deoxy-D-glucose에 발생된 소포체 스트레스를 통한 베타 세포 사멸에 있어서 GLP-1의 보호효과와 기전을 연구하고 자 한다. 방법: 인슐린 분비 베타세포로 햄스터에서 유래된 HIT-T15 세포주를 사용하였다. 소포체 스트레스를 유도하 기 위해서 HIT-T15 세포에 2-deoxy-D-glucose (2DG, 10 mM)를 처리하였다. 베타세포의 자연사는 MTT 분석, hoechst 33342 염색과 annexinV/PI 이중염색을 통한 FACS 분석을 통해 시행하였고, 소포체 스트레스 관련 유전자 및 단백질은 real-time PCR과 western blot으로 분석하였다. GLP-1 수용체 자극제인 Ex-4를 이용하여 세포 자연사에 대한 보호효과를 증명하기 위해 스트레스 유도 1시간 전에 전처리하였다. 결과: 2DG (10 mM)에 의한 소포체 스트레스를 유도했 을 때, 시간이 경과함에 따라 베타세포의 세포사멸이 증가 된다. 이 때, Ex-4 (25 nM)를 처리하게 되면 GRP78, GRP94, eIF2α, XBP-1과 CHOP 등을 조절함으로써 베타세 포의 세포사멸에 대한 보호효과를 가지고, insulin2 mRNA 의 발현 증가로 인해 인슐린 합성능을 증가시킨다. 결론: GLP-1은 소포체 스트레스 반응 조절을 통하여 베 타세포의 세포사멸에 대한 보호효과를 가지며 인슐린 mRNA 발현도 향상시켰다. 이는 GLP-1이 당뇨병 발생을 예방하고 치료하는데 중요한 역할을 할 수 있음을 제시한다.

Keywords

References

  1. Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A: Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 50(Suppl 1):S154-9, 2001 https://doi.org/10.2337/diabetes.50.2007.S154
  2. Poitout V, Robertson RP: Minireview: Secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339-42, 2002 https://doi.org/10.1210/en.143.2.339
  3. Lorenzo A, Razzaboni B, Weir GC, Yankner BA: Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756-60, 1994 https://doi.org/10.1038/368756a0
  4. Harding HP, Ron D: Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455-61, 2002 https://doi.org/10.2337/diabetes.51.2007.S455
  5. Oyadomari S, Araki E, Mori M: Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335-45, 2002 https://doi.org/10.1023/A:1016175429877
  6. Schroder M, Kaufman RJ: The mammalian unfolded protein response. Annu Rev Biochem 74:739-89, 2005 https://doi.org/10.1146/annurev.biochem.73.011303.074134
  7. Harding HP, Calfon M, Urano F, Novoa I, Ron D: Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575-99, 2002 https://doi.org/10.1146/annurev.cellbio.18.011402.160624
  8. Araki E, Oyadomari S, Mori M: Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp Biol Med 228:1213-7, 2003 https://doi.org/10.1177/153537020322801018
  9. Orskov C: Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 35:701-11, 1992
  10. Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, Egan JM: Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49:741-8, 2000 https://doi.org/10.2337/diabetes.49.5.741
  11. Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, Pipeleers D, Ling Z, Drucker DJ: GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 4:391-406, 2006 https://doi.org/10.1016/j.cmet.2006.10.001
  12. De Leon DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA: Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 52:365-71, 2003 https://doi.org/10.2337/diabetes.52.2.365
  13. Perfetti R, Merkel P: Glucagon-like peptide-1: a major regulator of pancreatic beta-cell function. Eur J Endocrinol 143:717-25, 2000 https://doi.org/10.1530/eje.0.1430717
  14. Xu G, Stoffers DA, Habener JF, Bonner-Weir S: Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270-6, 1999 https://doi.org/10.2337/diabetes.48.12.2270
  15. Wajchenberg BL: beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28:187-218, 2007 https://doi.org/10.1210/10.1210/er.2006-0038
  16. Kang HT, Hwang ES: 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78:1392-9, 2006 https://doi.org/10.1016/j.lfs.2005.07.001
  17. Twentyman PR, Luscombe M: A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56:279-85, 1987 https://doi.org/10.1038/bjc.1987.190
  18. Steensma DP, Timm M, Witzig TE: Flow cytometric methods for detection and quantification of apoptosis. Methods Mol Med 85:323-32, 2003
  19. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P: IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944-9, 2007 https://doi.org/10.1126/science.1146361
  20. Polonsky KS, Sturis J, Bell GI: Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus-a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med 334:777-83, 1996 https://doi.org/10.1056/NEJM199603213341207
  21. Ortsater H, Sjoholm A: A busy cell-endoplasmic reticulum stress in the pancreatic beta-cell. Mol Cell Endocrinol 277:1-5, 2007 https://doi.org/10.1016/j.mce.2007.06.006
  22. Scheuner D, Kaufman RJ: The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev 29:317-33, 2008 https://doi.org/10.1210/er.2007-0039
  23. Wang H, Kouri G, Wollheim CB: ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 118:3905-15, 2005 https://doi.org/10.1242/jcs.02513
  24. Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E, Bortell R, Rossini AA, Urano F: Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 4:245-54, 2006 https://doi.org/10.1016/j.cmet.2006.07.007
  25. Kharroubi I, Ladrière L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL: Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087-96. 2004 https://doi.org/10.1210/en.2004-0478
  26. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ: Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752-63, 2007 https://doi.org/10.1007/s00125-006-0590-z
  27. Kaufman RJ: Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211-33, 1999 https://doi.org/10.1101/gad.13.10.1211
  28. Mori K: Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451-4, 2000 https://doi.org/10.1016/S0092-8674(00)80855-7
  29. Kaufman RJ, Scheuner D, Schröder M, Shen X, Lee K, Liu CY, Arnold SM: The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3:411-21, 2002 https://doi.org/10.1038/nrm829
  30. Hui H, Nourparvar A, Zhao X, Perfetti R: Glucagon -like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A- and a phosphatidyl inositol 3-kinase-dependent pathway. Endocrinology 144:1444-55, 2003 https://doi.org/10.1210/en.2002-220897