P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS

메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질

  • 서영주 (LG화학 기술연구원) ;
  • 차종호 (한국과학기술원 생명화학공학과) ;
  • 이흔 (한국과학기술원 생명화학공학과) ;
  • 하용준 (LG화학 기술연구원) ;
  • 고정환 (LG화학 기술연구원) ;
  • 이철행 (LG화학 기술연구원)
  • Received : 2007.09.21
  • Accepted : 2007.10.22
  • Published : 2008.02.28

Abstract

ZnS-polymer gel films were prepared with incorporating mesoporous ZnS synthesized by surfactant-assisted templating process and poly (vinylidene fluoride)-hexafluoropropylene copolymer (P(VDF-HFP)) in order to observe the variation of ionic conductivities according to the various weight ratios between ZnS and P(VDF-HFP). Ionic conductivities for each gel electrolyte were measured with increasing temperature. As a result, ionic conductivities increased with increasing the amount of ZnS and temperature. In particular, the films with 20 and 25 wt% ZnS were found that they possessed the high ionic conductivity of approximately $10^{-4}Scm^{-1}$ at room temperature. However, above 20 wt% of ZnS, the enhancement of ionic conductivity was not observed. For the characterization of ZnS and the gel electrolyte, XRD (x-ray diffractometer), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), FT-IR (fourier transform-infrared spectrometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were employed. Ionic conductivities were measured by a.c. impedance method.

리튬염을 포함하는 P(VDF-HFP)계 겔 고분자에 surfactant-assisted templating process로 합성한 메조포러스 ZnS를 충전하여 다양한 ZnS 무게비를 가지는 전해질 필름을 제조하였고 겔 필름의 이온 전도도를 온도에 따라 측정하였다. 그 결과, 대체적으로 ZnS의 함량비가 증가할수록 증가하였다. 특히 20 wt%와 25 wt% ZnS를 포함하는 겔 필름은 상온에서 $10^{-4}Scm^{-1}$의 높은 이온 전도도를 보였다. 하지만 20 wt% 이상의 함량비에서는 더 이상 이온 전도도가 증가하지 않았다. 합성된 메조포러스 ZnS와 겔 전해질 필름의 특성은 XRD(x-ray diffractometer), DSC(differential scanning calorimetry), TGA(thermogravimetric analysis), FT-IR(fourier transform-infrared spectrometer), SEM(scanning electron microscopy), TEM(transmission electron microscopy)을 이용하여 분석하였다. 이온 전도도는 교류 임피던스법에 따라서 승온하면서 측정하였다.

Keywords

Acknowledgement

Supported by : 정보전자소재연구소

References

  1. MacCallum, J. R. and Vincent, C. A., Eds., "Polymer Electrolyte Reviews," Elsevier Applied Science, 2, London(1989).
  2. Song, J. Y., Wang, Y. Y. and Wang, C. C., "Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries," J. Power Sources, 77(2), 183-107(1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  3. Yuria, S., Hiroshi, K., Claudio, C. and Hitoshi Y., "Ionic Conduction Properties of PVDF-HFP Type Gel Polymer Electrolytes with Lithium Imide Salts," J. Phys. Chem. B, 104(9), 2189- 2192(2000). https://doi.org/10.1021/jp993723h
  4. Kweon, J.-O., You, J.-S. and Noh, S.-T., "Perfluoropolyether Addition Effect on the Properties of Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes," Korean Chem. Eng. Res., 42(6), 741-747 (2004).
  5. Antonelli, D. M. and Ying, J. Y., "Mesoporous Materials," Current Opinion in Colloid & Interface Science, 1, 523-529(1996). https://doi.org/10.1016/S1359-0294(96)80122-1
  6. Behrens, P., "Voids in Variable Chemcial Surroundings: Mesoporous Metal Oxides," Angew. Chem. Int. Ed. Engl., 35(5), 515-518 (1996). https://doi.org/10.1002/anie.199605151
  7. Dissanayake, M. A. K. L., Jayathilaka, P. A. R. D., Bokalawala, R. S. P., Albinsson, I. and Mellander, B.-E., "Effect of Concentration and Grain Size of Alumina Filler on the Ionic Conductivity Enhancement of the $(PEO)_9$ $LiCF_3SO_3:Al_2O_3$ Composite Polymer Electrolyte," J. Power sources, 119-121(1), 409-414(2003). https://doi.org/10.1016/S0378-7753(03)00262-3
  8. Dissanayake, M. A. K. L., Jayathilaka, P. A. R. D., Bokalawala, R. S. P., "Ionic Conductivity of (PEO)9:Cu(CF3SO3)2:Al2O3 Composite Polymer Electrolyte," Electrochim. Acta., 50(28), 5602- 5605(2005). https://doi.org/10.1016/j.electacta.2005.03.038
  9. Li, Z., Su, G., Wang, X. and Gao, D., "Micro-porous P(VDF-HFP)- Based Polymer Electrolyte Filled with Al2O3 Nanoparticles," Solid State Ionics, 176(23-24), 1903-1908(2005). https://doi.org/10.1016/j.ssi.2005.05.006
  10. Li, J., Zhao, X. and Yan, C., "Synthesis and Characterization of Mesoporous Zinc Sulfide by Surfactant-Assisted Templation Process," Mater. Lett., 60, 2896-2899(2006). https://doi.org/10.1016/j.matlet.2006.02.011
  11. Rana, R. K., Zhang, L., Yu, J. C., Mastai, Y. and Gedanken, A., "Mesoporous Structures from Supramolecular Assembly of in situ Generated ZnS Nanoparticles," Langmuir, 19(14), 5904-5911 (2003). https://doi.org/10.1021/la0343627