A study of in vivo and in vitro on aerobic exercise on functional activation of schwann cells following sciatic nerve crush injury in rats

유산소성 운동이 쥐의 좌골신경 손상 후 슈완세포의 기능적 활동성에 관한 생체내 . 외 연구

Yoon, Jin-Hwan;Seo, Tae-Beom;Jin, Nack-Shick;Kim, Jong-Oh;Jee, Young-Seok;Lim, Eun-Mi;Choi, Seung-Oh;Lee, Hee-Hyuk
윤진환;서태범;진낙식;김종오;지용석;임은미;최승오;이희혁

  • Published : 20080000

Abstract

Exercise stimulates axonal regeneration via proliferation of Schwann cells in the injured peripheral nerves. Cell division cycle 2 (Cdc2) is a prototypical cyclin-dependent kinase critical for cell cycle progression and Extracellular signal-regulated kinase 1/2 (ERK1/2) mediates neuronal responses to lesion signal. Yet role of these proteins in non-neuronal cells of regenerating sciatic nerves and exercise-mediated mechanism is largely unknown. Here, we report that treadmill training (TMT) and swim exercise (SWE) in rats facilitates the expression and the distal shift of Cdc2 and upregulates phosphorylation of ERK1/2 protein (p-ERK1/2) in the injured sciatic nerve. The number of proliferating Schwann cells and neurite outgrowth of DRGs was further increased in both TMT and SWE compared with sedentary group, participately in TMT group. The present data provide a new evidence that increased Cdc2 and p-ERK1/2 proteins in proliferating Schwann cells post injury may play a critical role in exercise-mediated enhancement of axonal regeneration in the injured peripheral nerve.

운동은 손상된 말초신경에서 슈완세포의 증식을 통해 축삭재생을 촉진시키는 것으로 알려져 있다. Cell division cycle 2(Cdc2) 단백질은 세포 주기를 관장하며, Extracellular signal-regulated kinase 1/2(ERK1/2)는 손상신호에 대한 신경성 반응을 조절하는 단백질로 알려져 있다. 하지만, 좌골신경 재생시 비신경세포에서 이러한 단백질의 역할에 대해서는 알려진 바 없다. 이에 본 연구에서는 좌골손상 후 운동이 Cdc2와 ERK1/2 단백질 발현에 미치는 효과를 흰쥐의 생체내외에서 조사하였다. 본 실험 결과 트레드밀 달리기와 수영은 손상된 좌골신경에서 Cdc2 발현과 원위부로의 이동을 촉진시켰고, ERK1/2 단백질의 인산화(p-ERK1/2)를 증가시키는 것으로 나타났다. 슈완세포의 증식과 감각신경절의 수초성장을 조사한 결과 대조군에 비해 운동군의 슈완세포 증식과 수초성장이 유의하게 증가된 것으로 나타났고, 특히 수영보다 트레드밀 운동의 효과가 큰 것으로 관찰되었다. 본 연구결과 좌골신경 손상 후 증식하는 슈완세포에서 Cdc2와 ERK1/2 단백질의 증가가 운동에 의한 축삭재생의 향상에 중요한 역할을 담당하고 있음을 보여준다.

Keywords

References

  1. Agthong, S., Kaewsena, A., Tanonridejchai, N., & Chettanez, V. (2006). Activation of MAPK ERK in peripheral nerve after injury. Neuroscience, 7(2), 45-52
  2. Atanasosld, S., Notterpek, L. Lee, H. Y. Castagner, F. Young, P. & Ehretgruber, M. U. (2004). The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron, 43(3), 499-511. https://doi.org/10.1016/j.neuron.2004.08.001
  3. Bedford, T. G., Tipton, C M, Wilson, N. C, Oppliger, R A, & Gisolfi, C V. (1979). Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology, 47(2), 1278-1283. https://doi.org/10.1152/jappl.1979.47.6.1278
  4. Childs, T. J., Watson, M. H, Sanghera, J. S., Campbell, D. L, Pelech S. L, & Mak, A. S. (1992). Phosphorylation of smooth muscle caldesmon by mitogen-activated protein (MAP) kinase and expression of MAP kinase in differentiated smooth muscle cells. Journal of Biological Chemistry, 267(1), 22853-22859.
  5. Cobb, M. H, Xu, S., Cheng. M., Fbert, D., Robbins, D., &. Goldsmith, E (1996). Structural analysis of the MAP kinase ERK2 and studies of MAP kinase regulatory pathways. Advances in Pharnmcclogy, 36(1), 49-65. https://doi.org/10.1016/S1054-3589(08)60576-1
  6. Coffey, E. T., Smicieie, G., Hongisto, V., Cao, J., Brecht, S., & Fkdegen, T. (2002). c-Jun N-terminal protein kinase PN 2/3 is specifically activated by stress, mediating c-Jun activation, in the presete of constitutive JNK1 activity in cerebellar neurons. Journal of Neuroscience, 22(3), 4335-4345. https://doi.org/10.1523/JNEUROSCI.22-11-04335.2002
  7. Cotrran, C. W, & Berchtold, N. C. (2002). Exercise a behavioral intervention to enhance brain health and plasticity. Trends in Neumseiences, 25(2), 295301.
  8. Fawcett, J. W., & Keynes, R. J. (1990). The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts. Annual Review of Neuroscience, 13(1), 43-60. https://doi.org/10.1146/annurev.ne.13.030190.000355
  9. Fine, E. G., Decosterd, I., Papaloizos, M., Zum, A.D., & Aebischer, P. (2002). GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. European Journal of Neuroscience, 15(3), 589-601. https://doi.org/10.1046/j.1460-9568.2002.01892.x
  10. Gutmann, E., & Jakoubek, B. (1963). Effect of increased motor activity on regeneration of the peripheral nerve in young rats. Physiologia Bohemoslovenica, 12(2), 463-468.
  11. Han, I. S., Seo, T. B., Kim, K. H., Yom J. H., Yoon, S. J., & Namgun& U. (2007). Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. Journal of Cell Science, 120(1), 246-255. https://doi.org/10.1242/jcs.03322
  12. Ikebe, M, & Reardon, S. (1990). Phospharylation of smooth muscle caldesnon by calmodulin-dependent protein kinase IL Identification of the phosphorylatian sites. Journal of Biological aienustry, 265(1), 17607-17612
  13. Leblanc, S. E., Srinivasan, R, Ferri, C, Mager, G. M, Gillian-Daniel, A. L, Wrabetz, L., et al. (2005). Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox2O during peripheral nerve myelination. Journal of Nneurochemistry, 93(2), 737-748. https://doi.org/10.1111/j.1471-4159.2005.03056.x
  14. Liu, Z. G., Zhao, L N., Liu, Y. W., U, T. T., Fan, D. M, & Chen, J. J. (2007). Activation of Cdc2 Contributes to Apoptosis in HPV E6 Expressing Human Keratinocytes in Response to Therapeutic Agents. Journal of Molecular Biology, 374(2), 334-45. https://doi.org/10.1016/j.jmb.2007.09.031
  15. Mirzapoiazova, T., Kolosova, L. A, Romer, L., Garcia, J. G., & Verin, A D. (2005). The role of caldesmon in the regulation of endothelial cytoskeleton and migration. Journal Cell Physiology, 203(2), 520-528. https://doi.org/10.1002/jcp.20244
  16. Reynolds, A. J., Hendry, I. A, & Bartlett, S. E. (2001). Anterograde and retrograde transport of active extracellular signal-related kinase 1 (ERK1) in the ligated rat sciatic nerve. Neuroscience, 105(2), 761-771. https://doi.org/10.1016/S0306-4522(01)00235-4
  17. Sarikcioglu, L., & Oguz, N. (2001). Exercise training and axonal regeneration after sciatic nerve inury. Internal Journal of Neuroscience, 109(2), 173-177. https://doi.org/10.3109/00207450108986533
  18. Seegers, J. C., Joubert, A. M, Panzer, A., Lottering. M. L., Jordan, C. A, & Joubert, F. (2000). Fumonisin B1 influenced the effects of arachidonic acid, prostaglandins. E2 and A2 on cell cycle progression, apoptosis induction, tyrosine- and CDC2 kinase activity in oesophageal cancer cells. Prostaglandin Leukot Essent Fatty Acids, 62(2), 7584.
  19. Sendtner, M., Dittrich, F., Hughes, R. A, & Thoenen H. (1994). Actions of CNTF and neurotrophins on degenerating motoneurons: preclinical studies and clinical implications. Journal of Neutological Sciences, 124(2), 77-83.
  20. Seo, T. B., Han, I. S., Yoon, J, H, Hong, K. E, Yoon, S. J., & Namgung. U. (2006). Involvement of Cdc2 in axonal regeneration enhanced by exercise training in rats. Medicine and Science in Sports and Exercise, 38(2), 1267-1276. https://doi.org/10.1249/01.mss.0000227311.00976.68
  21. Sheu, J. Y., Kulhanek, D. J., & Eckenstein, F. P. (2000). Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Experimental Neurology, 166(2), 392-402. https://doi.org/10.1006/exnr.2000.7508
  22. Stoll, G., & Miiller, H. W. (1999). Nerve injury, axonal degeneration and neural regeneration basic insights. Brain Pathology, 9(2), 313-325. https://doi.org/10.1111/j.1750-3639.1999.tb00229.x
  23. Van Meeteren, N. L, Brakkee, J. H, Harriers, F. P., Helders, P. J., & Gispen, W. H. (1997). Exercise training improves functional recovery and motor nerve conduction velocity after sciatic nerve crush lesion in the rat. Archives of Physical Medicine and Rehabilitation, 78(2), 70-77. https://doi.org/10.1016/S0003-9993(97)90013-7
  24. Vogelin, E., Baker, J. M, Gates, J., Dixit, V., Constantinescu, M.A, & Jones, N. F. (2006). Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Experimental Neurology, 199(2), 348-353. https://doi.org/10.1016/j.expneurol.2005.12.029
  25. Whitmarsh, A. J., & Davis, R. J. (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. Journal of Nblecular Medicine, 74(2), 589-607.
  26. Xu, X. M, Gunard, V., Kleitman, N., & Bunge, M. B. (1994). Axonal regeneration into Schwarm cell-seeded guidance channels grafted into transected adult rat spinal cord. Journal of Comparative Neurology, 351(2), 145-160.
  27. Ying, Z., Roy, R. R, Edgerton, V. R., & Gomez-pinilla, F. (2003). Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord. Brain Research, 987(2), 93-99. https://doi.org/10.1016/S0006-8993(03)03258-X