Hydrogeochemistry and isotope geochemistry of the Han River system: A summary

한강수계의 수리지구화학 및 동위원소지구화학: 요약

Ryu, Jong-Sik;Chang, Ho-Wan;Lee, Kwang-Sik
류종식;장호완;이광식

  • Published : 20080800

Abstract

A summary of hydrogeochemical and isotope geochemical studies in the Han River watershed conducted during 2000-2006 is presented. It is observed that the hydrochemistry of the Han River is mainly controlled by chemical weathering of basement rocks; i.e. silicates in the North Han River (NHR) basin and carbonates in the South Han River (SHR) basin. The δ18O and δD compositions of the Han River are heavier in the summer than in the other seasons, indicating increased evaporation loss in reservoirs. The deposition of atmospheric sulfates is the major source of sulfates in the NHR basin, while oxidation of sulfide minerals plus atmospheric deposition contribute to sulfates in the SHR. A forward model used to quantify the relative ion fluxes arising from rain and the weathering of carbonates and silicates showed that the dissolved loads in the NHR were originated mostly from silicates (∼70%), with a lesser portion from carbonate weathering, whereas the dissolved loads in the SHR came mainly from carbonates (∼80%), with a minor portion from silicate weathering. The silicate weathering rate (SWR) was similar between the NHR and SHR, but the CO2 consumption rate was lower in the SHR than in the NHR due to an important role of sulfuric acid derived from pyrite oxidation in the SHR. The U content and 234U/238U activity ratio were largely variable in the Han River during the study period depending on rainfall, runoff, dam effects, mixing of tributary waters and groundwater flux. The low U content and small 234U/238U activity ratio in the NHR arise mainly from a combination of incongruent silicate weathering and congruent dissolution of already weathered (secular equilibrium) materials. In contrast, the high U content and large 234U/238U activity ratio in the SHR are ascribed to the dissolution of carbonates and clastic sediments such as U-bearing black shales along with significant inputs of deep groundwater.

이 논문에서는 2000­2006년에 한강 수계에서 얻어진 수리지구화학 및 동위원소지구화학 연구결과를 요약 발표한다. 한강 하천수의 화학조성은 기반암의 영향을 주로 받고 있음이 관찰되었다. 즉 북한강에서는 규산염암의 화학적 풍화에 의하여, 남한강에서는 탄산염암의 풍화에 의한 영향을 크게 받고 있음이 확인되었다. 한강 하천수에서 산소와 수소 동위원소 조성이 여름철에 부화된 것은 댐에 의한 증발 손실이 일어나고 있음을 지시한다. 북한강의 용존 황산염 이온의 대부분은 대기 기원이었지만 남한강에서는 황철석 산화에 의하여 공급되는 양이 많았다. 포워드(forward) 모델을 이용하여 계산해 본 결과, 북한강의 화학조성은 약 70%가 규산염암의 영향을, 남한강 화학조성은 약 80%가 탄산염암의 영향을 받는 것으로 나타났다. 북한강과 남한강의 규산염 풍화율(Silicate Weathering Rate: SWR)은 서로 유사한 것으로 계산되었다. 그러나 남한강은 황산염 이온에 의한 화학적 풍화를 받고 있기 때문에 규산염 풍화를 통한 이산화탄소의 소비량은 남한강이 북한강보다 다소 낮았다. 한강 하천수의 우라늄(U) 농도와 234U/238U 값은 강수, 지표유출수, 지류와의 혼합, 지하수 유입, 댐 등에 의한 영향으로 계절변화를 보여주었다. 북한강에서 U 농도가 낮고 234U/238U 값이 적은 것은 규산염암의 비조화풍화와 풍화가 이미 상당히 진행된 물질로부터 복합적으로 영향을 받기 때문이다. 반면에 남한강에서의 높은 U 농도와 큰 234U/238U 값은 심부지하수의 유입, 함-우라늄 흑색 세일과 탄산암염암의 용해 등이 복합되어 나타나는 영향으로 해석되었다.

Keywords

References

  1. 고용권, 윤성택, 안종성, 1994, 국내 지열수의 환경동위원소 및 수문화학적 연구: 유성 온천지역, 한국자원공학회지, 31, 388-399
  2. 권성택, 이하영, 藍晶瑩, 이병수, 서광수, 도성재, 1991, 우리나라 하부고생대의 탄산염암과 코노돈트에 대한 Sr-Nd 동위원소 기초연구, 지질학회지, 27, 587-596
  3. 김규한, 심은숙, 2001, 한강 하천수 중 용존이온의 지구화학적 특성과 기원, 자원환경지질, 34, 539-553
  4. 김규한, 최현정, 1998, 남한의 온천지역의 열수와 지하수의 지구화학적 연구, 한국지구과학회지, 19, 22-34
  5. 김선준, 안종성, 1993, 편마암 지역에서 열극을 통한 지하수의 유동특성에 대한 환경동위원소적 연구, 한국자원공학회지, 30, 474-480
  6. 김정환, 정창식, 손영철, 고희재, 1997, 평창지역의 지질과 선캠브리아 화강암질암의 스트론튬, 니오디미움 및 납 동위원소 조성, 지질학회지, 33, 27-35
  7. 서혜영, 김규한, 1996, 한강수계분지내 하천수의 지구화학적 특성, 지하수환경, 4, 130-143
  8. 유재영, 최인규, 김형수, 1994, 춘천지역의 기반암 종류에 따른 지표수의 지구화학적 특성, 지질학회지, 30, 307-324
  9. 이광식, 이창복, 1999, 남한 강수와 하천수의 산소와 수소 동위원소 조성, 지질학회지, 35, 73-84
  10. 허봉, 유재영, 1998, 강원도 강릉시 강동면에 분포하는 폐탄광으로부터의 배수에 의한 임곡천 및 동해의 오염, 지하수환경, 4, 44-55
  11. Bourdon, B., Henderson, G.M., Lundstrom, C.C. and Turner, S.P., 2003, Uranium-series geochemistry, Geochemical Society, Mineralogical Society of America, Washington
  12. Chabaux, F., Riotte, J., Clauer, N. and France-Lanord, Ch., 2001, Isotopic tracing of dissolved U fluxes of the Himalyan rivers: implications for present and past U budgets of the Ganges-Brahmaputra system, Geochimica et Cosmochimica Acta, 65, 3201-3217 https://doi.org/10.1016/S0016-7037(01)00669-X
  13. Chae, K.T., Yun, S.T., Kim, K.H., Lee, P.K. and Choi, B.Y., 2004, Atmospheric versus lithogenic contribution to the composition of first- and second-order stream waters in Seoul and its vicinity, Environmental International, 30, 73-85 https://doi.org/10.1016/S0160-4120(03)00150-8
  14. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new review, Earth-Science Reviews, 52, 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  15. Craig, H., 1961, Isotopic variations in meteoric waters, Science, 133, 1702-1703 https://doi.org/10.1126/science.133.3465.1702
  16. Edmond, J.M., Palmer, M.R., Measures, C.I., Grant, B. and Stallard, R.F., 1995, The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil, Geochimica et Cosmochimica Acta, 59, 3301-3325 https://doi.org/10.1016/0016-7037(95)00128-M
  17. Faure, G., 1986, Principles of isotopes geology. John Wiley & Sons, New York, 897 p.
  18. Flintrop, C., Hohlmann, B., Jasper, T., Korte, C., Podlaha, O.G. Scheele, S. and Veizer, J., 1996, Anatomy of pollution: rivers of North Rhine-Westphalia, Germany, American Journal of Science, 296, 59-99
  19. Gaillardet, J., Dupré, B. and Allegre, C.J., 1995, A global geochemical mass budget applied to the Congo Basin rivers: Erosion rates and continental crust composition, Geochimica et Cosmochimica Acta, 59, 3469-3485 https://doi.org/10.1016/0016-7037(95)00230-W
  20. Gaillardet, J., Dupré, B., Allegre, C.J. and Négrel, P., 1997, Chemical and physical denudation in the Amazon River basin, Chemical Geology, 142, 141-173 https://doi.org/10.1016/S0009-2541(97)00074-0
  21. Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C. J., 1999, Global silicate weathering and $CO_2$ consumption rates deduced from the chemistry of large rivers, Chemical Geology, 159, 3-30 https://doi.org/10.1016/S0009-2541(99)00031-5
  22. Garrels, R.M., 1967, Genesis of some ground waters from igneous rocks. In: Abelson, P.H. (ed.), Researches in Geochemistry, John Wiley & Sons, 405-420
  23. Gonfiantini, R., 1986, Environmental isotopes in lake studies. In: Fritz, P., Fontes, J. Ch. (Eds), Handbook of environmental isotope geochemistry, vol. 2, Elsevier, New York. 113-168
  24. Grasby, S.E., Hutcheon, I. and Krouse, H.R., 1997, Application of the stable isotope composition of SO4 to tracing anomalous TDS in Nose Creek, southern Alberta, Canada, Applied Geochemistry, 15, 67-77 https://doi.org/10.1016/S0883-2927(99)00018-9
  25. Han, G. and Liu, C.-Q., 2004, Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China, Chemical Geology, 204, 1-21 https://doi.org/10.1016/j.chemgeo.2003.09.009
  26. Johnson, C.M., Beard, B.L. and Albarede, F., 2004, Geochemistry of non-traditional stable isotopes, Geochemical Society, Mineralogical Society of America, Washington, 454 p.
  27. Karim, A. and Veizer, J., 2000, Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes, Chemical Geology, 170, 153-177 https://doi.org/10.1016/S0009-2541(99)00246-6
  28. Kellman, L.M. and Hillaire-Marcel, C., 2003, Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture, Ecosystems & Environment, 95, 87-102 https://doi.org/10.1016/S0167-8809(02)00168-8
  29. Kim, H.C., Yu, M.J. and Han, I., 2006, Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea, Applied Geochemistry, 21, 1226-1239 https://doi.org/10.1016/j.apgeochem.2006.03.011
  30. Kim, L.H., Choi, E., Gil, K.I. and Stenstrom, M.K., 2004, Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea, Science of the Total Environment, 321, 115-125 https://doi.org/10.1016/j.scitotenv.2003.08.018
  31. Kim, M.H. and Yu, M.J., 2005, Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane, Environmental Research, 97, 116-123 https://doi.org/10.1016/j.envres.2004.07.012
  32. Lee, K.S. and Kim, Y., 2007, Determining the seasonality of groundwater recharge using water isotopes: a case study from the upper North Han River basin, Korea, Environmental Geology, 52, 853-859 https://doi.org/10.1007/s00254-006-0527-3
  33. Lee, K.S., Ryu, J.S., Ahn, K.H., Chang, H.W. and Lee, D., 2007, Factors controlling carbon isotope ratios of dissolved inorganic carbon in two major tributaries of the Han River, Korea, Hydrological Processes, 21, 500-509 https://doi.org/10.1002/hyp.6254
  34. Lerman, A. and Wu, L., 2006, $CO_2$ and sulfuric acid controls of weathering and river water composition, Journal of Geochemical Exploration, 88, 427-430 https://doi.org/10.1016/j.gexplo.2005.08.100
  35. Li, D., Kim, M., Shim, W.J., Yim, U.H., Oh, J.R. and Kwon, Y.J., 2004, Seasonal flux of nonylphenol in Han River, Korea, Chemosphere, 56, 1-6 https://doi.org/10.1016/j.chemosphere.2004.01.034
  36. Mayer, B., Boyer, E.W., Goodale, C., Jaworski, N.A., Breemen, N.V., Howarth, R.W., Seitzinger, S., Billen, G., Lajtha, K., Nadelhoffer, K., Dam, D.V., Hetling, L.J., Nosal, M. and Paustian, K., 2002, Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints, Biogeochemistry, 57/58, 171-197
  37. Meybeck, M., 1988, Global chemical weathering from surficial rocks estimated from river dissolved loads, American Journal of Science, 287, 401-428 https://doi.org/10.2475/ajs.287.5.401
  38. Moon, S., Huh, Y., Qin, J. and van Pho, N., 2007. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors, Geochimica et Cosmochimica Acta, 71, 1411-1430 https://doi.org/10.1016/j.gca.2006.12.004
  39. Negrel, Ph., Allegre, C.J., Dupre, B. and Lewin, E., 1993, Erosion sources determined by inversion of major and trace element ratios in river water: The Congo Basin case, Earth and Planetary Science Letters, 120, 59-76 https://doi.org/10.1016/0012-821X(93)90023-3
  40. Negrel, Ph. and Dupre, B., 1995, Temporal variations in Sr isotopic ratios, major and trace element composition of the Oubangui river basin: implication for the sources of material, In: Oliver, J.C., Boulegue, J. (eds.), Colloque Grands Bassins Fluviaux peri Atlantiques: Congo, Niger, Amazone, 22-24 November 1993. ORSTOM, CNRS, INSU, Paris, 39-50
  41. Negrel, Ph. and Lachassagne, P., 2000, Geochemistry of the Maroni River (French Guiana) during the low water stage: implications for water-rock interaction and groundwater characteristics, Journal of Hydrology, 237, 212-233 https://doi.org/10.1016/S0022-1694(00)00308-5
  42. Osmond, J.K. and Ivanovich, M.I., 1992, Uranium-series mobilization and surface hydrology. In: Ivanovich, M., Harmon, R.S. (eds.), Uranium-series disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd ed., Clarendon Press, Oxford, 259-289
  43. Parkhurst, D.L. and Appelo, C.A.J., 1999, User's guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99- 4259, 312 p.
  44. Pawellek, F., Frauenstein, F. and Veizer, J., 2002, Hydrochemistry and isotope geochemistry of the upper Danube River, Geochimica et Cosmochimica Acta, 66, 3839-3854 https://doi.org/10.1016/S0016-7037(01)00880-8
  45. Picouet, C., Dupre, B., Orange,D. and Valladon, M., 2002, Major and trace element geochemistry in the upper Niger river (Mali): physical and chemical weathering rates and $CO_2$ consumption, Chemical Geology, 185, 93-124 https://doi.org/10.1016/S0009-2541(01)00398-9
  46. Quade, J., English, N. and DeCelles, P.G., 2003, Silicate versus carbonate weathering in the Himalaya: a comparison of the Arun and Seti River watersheds, Chemical Geology, 202, 275-296 https://doi.org/10.1016/j.chemgeo.2002.05.002
  47. Riotte, J. and Chabaux, F., 1999, ($^{234}U/^{238}U$) activity ratios in freshwaters as tracers of hydrological processes: the Strengbach watershed (Vosges, France), Geochimica et Cosmochimica Acta, 63, 1263-1275 https://doi.org/10.1016/S0016-7037(99)00009-5
  48. Riotte, J., Chabaux, F., Benedetti, M., Dia, A., Gerard, M., Boulegue, J. and Etame, J., 2003, Uranium colloidal transport and origin of the $^{234}U-^{238}U$ fractionation in surface waters: new insights from Mount Cameroon, Chemical Geology, 202, 365-381 https://doi.org/10.1016/j.chemgeo.2002.10.002
  49. Robinson, B.W. and Bottrell, S.H., 1997, Discrimination of sulfur sources in pristine and polluted New Zealand river catchments using stable isotopes, Applied Geochemistry, 12, 305-319 https://doi.org/10.1016/S0883-2927(96)00070-4
  50. Ryu, J.S., Lee, K.S., Kim, J.H., Ahn, K.H. and Chang, H.W., 2006, Geostatistical analysis for hydrogeochemical characterization of the Han River, Korea: Identification of major factors governing water chemistry, Bulletin of Environmental Contamination and Toxicology, 76, 1-7 https://doi.org/10.1007/s00128-005-0882-x
  51. Ryu, J.S., Lee, K.S., Lee, S.G., Lee, D. and Chang, H.W., 2007a, Seasonal and spatial variations of rare earth elements in rainwaters, river waters and total suspended particles in air in South Korea, Journal of Alloys and Compounds, 437, 344-350 https://doi.org/10.1016/j.jallcom.2006.08.002
  52. Ryu, J.S., Lee, K.S. and Chang, H.W., 2007b, Hydrogeochemical and isotopic investigations of the Han River basin, South Korea, Journal of Hydrology, 345, 50-60 https://doi.org/10.1016/j.jhydrol.2007.08.001
  53. Ryu, J.S., Lee, K.S., Chang, H.W. and Shin, H.S., 2008a, Chemical weathering of carbonates and silicates in the Han River basin, South Korea, Chemical Geology, 247, 66-80 https://doi.org/10.1016/j.chemgeo.2007.09.011
  54. Ryu, J.S., Lee, K.S. Chang, H.W. and Cheong, C.S., 2008b, Uranium isotopes as a tracer of sources of dissolved solutes in the Han River, South Korea, Chemical Geology (accepted)
  55. Sarin, M.M., Krishnaswami, S., Somayajulu, B.L.K. and Moore, W.S., 1990, Chemistry of U, Th, and Ra isotopes in the Ganges-Brahmaputra river system: weathering processes and fluxes to the bay of Bengal, Geochimica et Cosmochimica Acta, 54, 1387-1396 https://doi.org/10.1016/0016-7037(90)90163-F
  56. Spence, J. and Telmer, K., 2005, The role of sulfur in chemical weathering and atmospheric $CO_2$ fluxes: Evidence from major ions, ${\delta}^{13}C_{DIC}$, and ${\delta}^{34}S_{SO4}$ in rivers of the Canadian Cordillera, Geochimica et Cosmochimica Acta, 69, 5441-5458 https://doi.org/10.1016/j.gca.2005.07.011
  57. Thode, H.G., 1991, Sulfur isotopes in Nature and the environment: an overview, In: Krouse, H.R., Grinenko, V.A. (eds.), Stable isotopes: Natural and anthropogenic sulphur in the environment. SCOPE 43, John Wiley & Sons, 1-26
  58. Viers, J., Dupre, B., Braun, J.-J., Deberdt, S., Angeletti, B., Ngoupayou, J.N. and Michard, A., 2000, Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering procedures and elements transport mechanisms in humid tropical environments, Chemical Geology, 169, 211-241 https://doi.org/10.1016/S0009-2541(00)00298-9
  59. Yang, C., Telmer, K. and Veizer, J., 1996, Chemical dynamics of the "St. Lawrence" riverine system: ${\delta}D_{H2O}$, $\delta$ $^{18}O_{H2O}$, ${\delta}^{13}C_{DIC}$, ${\delta}^{34}S_{sulfate}$, and dissolved $^{87}Sr/^{86}Sr$, Geochimica et Cosmochimica Acta, 60, 851-866 https://doi.org/10.1016/0016-7037(95)00445-9
  60. Yu, J.Y. and Park, Y., 2004, Sulphur isotopic and chemical compositions of the natural waters in Chuncheon area, Korea, Applied Geochemistry, 19, 843-853 https://doi.org/10.1016/j.apgeochem.2003.10.011
  61. Yu, J.Y., 1996, Pollution of Osheepcheon creek by abandoned coal mine drainage in Dogyae area, eastern part of Samcheok coal field, Kwangwon-Do, Korea, Environmental Geology, 27, 286-599 https://doi.org/10.1007/BF00766698
  62. Yu, J.Y., Park, Y., Mielke, R.E. and Coleman, M.L., 2007, Sulfur and oxygen isotopic compositions of the dissolved sulphate in the meteoric water in Chuncheon, Korea, Geosciences Journal, 11, 357-367 https://doi.org/10.1007/BF02857051
  63. Yun, S.T., Koh, Y.K., Kim, C.S. and So, C.S., 1998a, Geochemistry of geothermal waters in Korea: Environmental isotope and hydrochemical characteristics I. Bugok area, Economic Geology, 31, 185-199 https://doi.org/10.2113/gsecongeo.31.2.185
  64. Yun, S.T., Koh, Y.K., Choi, H.S., Youm, S.J. and So, C.S., 1998b, Geochemistry of geothermal waters in Korea: Environmental isotope and hydrochemical characteristics II. Jungwon and Munkyeong area, Economic Geology, 31, 201-213
  65. Wu, L., Huh, Y., Qin, J., Du, G. and van Der Lee, S., 2005, Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau, Geochimica et Cosmochimica Acta, 69, 5279-5294 https://doi.org/10.1016/j.gca.2005.07.001
  66. Zhang, J., Takahashi, K., Wushiki, H., Yabuki, S., Xiong, J.-M. and Masuda, A., 1995, Water geochemistry of rivers around the TaKlimakan Desert (NW China): Crustal weathering and evaporation processes in arid land, Chemical Geology, 119, 225-237 https://doi.org/10.1016/0009-2541(94)00088-P