Mechanical properties of silanized jute–polypropylene composites

Hong, C.K.;Hwang, I.;Kim, N.;Park, D.H.;Hwang, B.S.;Nah, C.

  • Published : 20080100

Abstract

An affordable composite was prepared from jute fibers and polypropylene (PP) in this study. Jute fibers are echo-friendly, low-density materials yielding considerably lightweight composites with highly specific properties. The surfaces of the jute fibers were silanized to increase the interfacial adhesion between the jute fiber and the polymer matrix. During the fracture process of the silanized composites, the jute fibers were broken without complete pullout; much of the PP matrix still coated the fibers, indicating the enhanced degree of adhesion. The tensile and dynamic mechanical properties of the jute-PP composites were enhanced by the silane treatment as a result of the improved interfacial adhesion between the silanized jute fiber and the PP matrix. (c) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Keywords

References

  1. A. O'Donnell, M.A. Dwieb, R.P. Wool, Compos. Sci. Technol. 64 (2004) 1135 https://doi.org/10.1016/j.compscitech.2003.09.024
  2. M.A. Dwieb, B. Hu, A. O'Donnell, H.W. Shenton, R.P. Wool, Compos. Struct. 63 (2004) 147 https://doi.org/10.1016/S0263-8223(03)00143-0
  3. T.M. Gowda, A.C.B. Naidu, R. Chhaya, Compos. Part A 30 (1999) 277 https://doi.org/10.1016/S1359-835X(98)00157-2
  4. P.J. Herrera-Franco, A. Valadez-Gonzalez, Compos. Part A 35 (2004) 339 https://doi.org/10.1016/j.compositesa.2003.09.012
  5. M. Abdelmouleh, S. Boufi, M.N. Belgacem, A.P. Duarte, A. Ben Salah, A. Gandini, Int. J. Adhes. Adhes. 24 (2004) 43 https://doi.org/10.1016/S0143-7496(03)00099-X
  6. D. Ray, B.K. Sarkar, S. Das, A.K. Rana, Compos. Sci. Technol. 62 (2002) 911 https://doi.org/10.1016/S0266-3538(02)00005-2
  7. A.K. Mohanty, M.A. Khan, G. Hinrichsen, Compos. Part A 31 (2000) 143 https://doi.org/10.1016/S1359-835X(99)00057-3
  8. J. Gassan, A.K. Bledzki, Compos. Part A 28A (1997) 1001
  9. T. Doan, S. Gao, E. Mader, Compos. Sci. Technol. 66 (2006) 952 https://doi.org/10.1016/j.compscitech.2005.08.009
  10. M.N. Sain, B.V. Kokta, J. Appl. Polym. Sci. 54 (1994) 1545 https://doi.org/10.1002/app.1994.070541019
  11. P.J. Herrera-Franco, A. Valadez-Gonzalez, Compos. Part B 36 (2005) 597 https://doi.org/10.1016/j.compositesb.2005.04.001
  12. M. Bengtsson, K. Oksman, Compos. Part A 37 (2006) 752 https://doi.org/10.1016/j.compositesa.2005.06.014
  13. M.A. Khan, M.M. Hassan, J. Appl. Polym. Sci. 100 (2006) 4142 https://doi.org/10.1002/app.23441
  14. M.N. Ichazo, C. Albano, J. Gonzalez, R. Perera, M.V. Candal, Compos. Struct. 54 (2001) 207 https://doi.org/10.1016/S0263-8223(01)00089-7
  15. A.K. Bledzki, J. Gassan, Prog. Polym. Sci. 24 (1999) 221 https://doi.org/10.1016/S0079-6700(98)00018-5
  16. A.N. Shah, S.C. Lakkad, Fiber Sci. Technol. 15 (1981) 41 https://doi.org/10.1016/0015-0568(81)90030-0
  17. C.A. Cruz-Ramos, Natural Fibre-Reinforced Thermoplastics, Mechanical Properties of Reinforced Thermoplastics, Elsevier, Amsterdam, 1986, p. 65
  18. L.G. Britcher, D.C. Kehoe, J.G. Matisons, A.G. Swincer, Macromolecules 28 (1995) 3110 https://doi.org/10.1021/ma00113a013
  19. J.M. Felix, P. Gatenholm, J. Appl. Polym. Sci. 42 (1991) 609 https://doi.org/10.1002/app.1991.070420307
  20. M. Jacob, B. Francis, S. Thomas, Polym. Compos. 27 (2006) 672
  21. A.K. Rana, B.C. Mitra, A.N. Banerjee, J. Appl. Polym. Sci. 71 (1999) 531 https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<531::AID-APP2>3.0.CO;2-I
  22. C.K. Hong, R.P. Wool, J. Appl. Polym. Sci. 95 (2005) 1524 https://doi.org/10.1002/app.21044