Effect of additives on redox behavior of iron oxide for chemical hydrogen storage

Ryu, Jae-Chun;Lee, Dong-Hee;Kang, Kyoung-Soo;Park, Chu-Sik;Kim, Jong-Won;Kim, Young-Ho

  • Published : 20080300

Abstract

The redox behaviors of iron oxides, which were modified with Pd, Pt, Rh, Ru, Al, Ce, Ti and Zr as additives, were investigated using temperature-programmed reaction (TPR) technique. The modified iron oxides were prepared by co-precipitation method using urea precipitant. The role of additives was also examined using XRD and SEM analysis in detail. As a result, Pd, Pt, Rh and Ru additives have an effect on promoting the reduction and lowering the re-oxidation temperature of iron oxide. Especially, it is revealed that the effect of Rh species on lowering the reduction temperature is attributed to decrease of activation energy for H-2 reduction according to Fe2O3 -> Fe3O4 course. Meanwhile, Al, Ce, Ti and Zr additives played an important role in prevention of deactivation of iron oxide by repeated redox cycles. Redox performances of iron oxides were also enhanced due to cooperative effects by co-addition of Rh and another species such as Al, Cc and Zr. Finally, Fe-O/(Rh, Ce, Zr) sample exhibited good performance for H-2 evolution by water-splitting through synergistic effect of component additives. (C) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Keywords

References

  1. P. Kruger, Int. J. Hydrogen Energy 26 (2001) 1137 https://doi.org/10.1016/S0360-3199(01)00059-3
  2. P. Kruger, Int. J. Hydrogen Energy 25 (2000) 1023 https://doi.org/10.1016/S0360-3199(00)00028-8
  3. M. Conte, P.P. Prosini, S. Passerini, Mater. Sci. Eng. B 108 (2004) 2
  4. K. Otsuka, C. Yamada, T. Kaburagi, S. Takenaka, Int. J. Hydrogen Energy 28 (2003) 335 https://doi.org/10.1016/S0360-3199(02)00070-8
  5. K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, J. Power Sources 122 (2003) 111 https://doi.org/10.1016/S0378-7753(03)00398-7
  6. V. Hacker, G. Faleschini, H. Fuchs, R. Fankhauser, G. Simader, M. Ghaemi, B. Spreitz, K. Friedrich, J. Power Sources 71 (1998) 226 https://doi.org/10.1016/S0378-7753(97)02718-3
  7. V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr, K. Kordesch, J. Power Sources 86 (2000) 531 https://doi.org/10.1016/S0378-7753(99)00458-9
  8. S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, J. Catal. 228 (2004) 66 https://doi.org/10.1016/j.jcat.2004.08.027
  9. W. Hui, S. Takenaka, K. Otsuka, Int. J. Hydrogen Energy 31 (2006) 1732 https://doi.org/10.1016/j.ijhydene.2005.12.010
  10. S. Takenaka, K. Nomura, N. Hanaizumi, K. Otsuka, Appl. Catal. A 282 (2005) 333
  11. K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi, M. Matsukata, Appl. Catal. A 288 (2005) 143
  12. J.B. Lee, C.S. Park, S.I. Choi, Y.W. Song, Y.H. Kim, H.S. Yang, J. Ind. Eng. Chem. 11 (2005) 96
  13. Y.W. Song, J.B. Lee, C.S. Park, G.J. Hwang, S.I. Choi, H.S. Yang, Y.H. Kim, J. Ind. Eng. Chem. 12 (2006) 255
  14. N.W. Hurst, S.J. Gentry, A. Jones, B.D. McNicol, Catal. Rev. Sci. Eng. 24 (1982) 233 https://doi.org/10.1080/03602458208079654
  15. O.J. Wimmers, P. Arnoldy, J.A. Moulijn, J. Phys. Chem. 90 (1986) 1331 https://doi.org/10.1021/j100398a025
  16. Y. Lei, N.W. Cant, D.L. Trimm, J. Catal. 239 (2006) 227 https://doi.org/10.1016/j.jcat.2006.01.033