DOI QR코드

DOI QR Code

Simulation of $CO_2$ removal with aqueous sodium glycinate solutions in a pilot plant

  • Lee, Seung-Moon (Department of Chemical Engineering, Yonsei University) ;
  • Song, Ho-Jun (Department of Chemical Engineering, Yonsei University) ;
  • Maken, Sanjeev (Department of Applied Sciences, Deenbandhu Chhotu Ram University of Science & Technology) ;
  • Yoo, Seung-Kwan (Department of Chemical Engineering, Yonsei University) ;
  • Park, Jin-Won (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Seon-Wook (Technology Planning Department, Process Plant Group, Hyundai Engineering Company Limited) ;
  • Shim, Jae-Goo (Environment and Assessment Group, Korea Electric Power Research Insti) ;
  • Jang, Kyung-Ryong (Environment and Assessment Group, Korea Electric Power Research Institute)
  • Published : 20080000

Abstract

In this paper, density, viscosity, surface tension and vapor pressure of aqueous sodium glycinate solutions of different mass fractions (0.1-0.5) at different temperatures (20-100 ℃) were simulated using Pro/II (version 6.01), a commercial process simulator, and compared with corresponding experimentally measured data. It was found that simꠓulated data of physicochemical properties compared well with corresponding experimental data. We have also predicted concentration of $CO_2$ with each ideal stage in an absorber/stripper tower.

Keywords

References

  1. CCB standards, The climate community and biodiversity standards, http://www.climate-standards.org/index.html
  2. Kyoto Protocol, UNFCCC 1997. (http://unfccc.int/kyoto_protocol/ items/2830.php)
  3. H. Kim and E. Shin, The Impact of Climate Policy on ROK's Energy Sector, paper presented at 24th USAEE/IAEE North American Conference, July 8-10, 2004, Washington, DC. USA
  4. Korea Energy Economic Institute (KEEI). Long-term policies and strategies on the United Nations framework convention on climate change, KEEI 2004-SR-17. Seoul, South Korea: Ministry of Commerce, Industry, and Energy (MOCIE), 2004
  5. Ministry of Commerce, Industry, and Energy (MOCIE). Major statistics of resource and energy, Seoul, South Korea (http://www. mocie.go.kr)
  6. A. Benamor and M. K. Aroua, Korean J. Chem. Eng., 24, 16 (2007) https://doi.org/10.1007/s11814-007-5003-6
  7. M. R. Housaindokht, B. Haghighi and M. R. Bozorgmehr, Korean J. Chem. Eng., 24, 102 (2007) https://doi.org/10.1007/s11814-007-5017-0
  8. Y. K. Kwon and H. K. Bae, Korean J. Chem. Eng., 24, 127 (2007) https://doi.org/10.1007/s11814-007-5022-3
  9. H. S. Byun and H.Y. Lee, Korean J. Chem. Eng., 23, 1003 (2006) https://doi.org/10.1007/s11814-006-0021-3
  10. J. I. Yang and J. N. Kim, Korean J. Chem. Eng., 23, 77 (2006) https://doi.org/10.1007/BF02705695
  11. Y. J. Park, J.Y. Lee, K.C. Shin, J.W. Seol, K.M. Lee, D.G. Huh, K. P. Park and H. Lee, Korean J. Chem. Eng., 23, 283 (2006) https://doi.org/10.1007/BF02705728
  12. A. Indarto, D. R. Yang, J.W. Choi, H. Lee and H. K. Song, J. Hazard. Mater., In Press (doi:10.1016/j.jhazmat.2006.12.023)
  13. S. Lee, J.W. Park, H. J. Song, S. Maken and T. Filburn, Energy Policy, 36, 326 (2008) https://doi.org/10.1016/j.enpol.2007.09.018
  14. D. Chang, J. Min, K. Moon, Y. K. Park, J. K. Jeon and S. K. Ihm, Chem. Eng. Sci., 59, 2715 (2004) https://doi.org/10.1016/j.ces.2004.01.067
  15. S.W. Park, B. S. Choi and J.W. Lee, Korean J. Chem. Eng., 23, 138 (2006) https://doi.org/10.1007/BF02705705
  16. S.W. Park, B. S. Choi, S. S. Kim and J.W. Lee, Korean J. Chem. Eng., 21, 1205 (2004) https://doi.org/10.1007/BF02719495
  17. J.W. Lee, M. K. Chun, K. M. Lee, Y. J. Kim and H. Lee, Korean J. Chem. Eng., 19, 673 (2002) https://doi.org/10.1007/BF02699316
  18. J. I. Baek, J. H. Yoon and H. M. Eum, Korean J. Chem. Eng., 17, 484 (2000) https://doi.org/10.1007/BF02706866
  19. J. H. Yoon, J. I. Baek, Y. Yamamoto, T. Komai and T. Kawamura, Chem. Eng. Sci., 58, 5229 (2003) https://doi.org/10.1016/j.ces.2003.08.019
  20. J.Y. Park, S. J. Yoon, H. Lee, J. H. Yoon, J.G. Shim, J. K. Lee, B.Y. Min, H. M. Eum and M. C. Kang, Fluid Phase Equilib., 202, 359 (2002) https://doi.org/10.1016/S0378-3812(02)00142-5
  21. S. Lee, S. I. Choi, S. Maken, H. J. Song, H.C. Shin, J.W. Park, K. R. Jang and J. H. Kim, J. Chem. Eng. Data, 50, 1773 (2005) https://doi.org/10.1021/je050210x
  22. S. Lee, H. J. Song, S. Maken, H. C. Shin, H. C. Song and J.W. Park J. Chem. Eng. Data, 51, 504 (2006) https://doi.org/10.1021/je0503913
  23. H. J. Song, S. Lee, S. Maken, J. J. Park and J.W. Park, Fluid Phase Equilib., 246, 1 (2006) https://doi.org/10.1016/j.fluid.2006.05.012
  24. S. Lee, H. J. Song, S. Maken and J.W. Park, Ind. Eng. Chem. Res., 46, 1578 (2007) https://doi.org/10.1021/ie061270e
  25. J. Cho and J. K. Jeon, Korean J. Chem. Eng., 23, 1 (2006) https://doi.org/10.1007/BF02705684
  26. B. Liao, Z. Lei, Z. Xu, R. Zhou and Z. Duan, Chem. Eng. J., 84, 581 (2001) https://doi.org/10.1016/S1385-8947(01)00175-9
  27. H. Al-Muslim, I. Dincer and S. M. Zubair, Int. J. Therm. Sci., 44, 65 (2005)
  28. 28.W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, McGraw-Hill, Seventh edition (2005)
  29. A. Sakwattanapong, A. Aroonwilas and A. Veawab, Ind. Eng. Chem. Res., 44, 4465 (2005) https://doi.org/10.1021/ie050063w
  30. M. Bolhar-Nordenkampf, A. Friedl, U. Koss and T. Tork, Chem. Eng. Process., 43, 701 (2004) https://doi.org/10.1016/S0255-2701(03)00011-4
  31. C. Alie, L. Backham, E. Croiset and P. L. Douglas, Energ. Convers. Manage., 46, 475 (2005) https://doi.org/10.1016/j.enconman.2004.03.003
  32. N. A. Al-Baghli, S.A. Pruess, V. F. Yesavage and M. S. Selim, Fluid Phase Equilib., 185, 31 (2001) https://doi.org/10.1016/S0378-3812(01)00454-X
  33. A. Vadaoalli and J. D. Seader, Comput. Chem. Eng., 25, 445 (2001) https://doi.org/10.1016/S0098-1354(01)00624-X