DOI QR코드

DOI QR Code

Application of spent sulfidic caustics for autotrophic denitrification in a MLE process and their microbial characteristics by fluorescence in situ hybridization

  • Park, Jeung-Jin (Department of Environmental Engineering, Pusan National University) ;
  • Park, So-Ra (Department of Environmental Engineering, Pusan National University) ;
  • Ju, Dong-Jin (Department of Environmental Engineering, Pusan National University) ;
  • An, Jeong-Keun (Department of Environmental Engineering, Pusan National University) ;
  • Byun, Im-Gyu (Department of Environmental Engineering, Pusan National University) ;
  • Park, Tae-Joo (Department of Environmental Engineering, Pusan National University)
  • Published : 2008.06.01

Abstract

Spent sulfidic caustics (SSCs) produced from petrochemical plants contain a high concentration of hydrogen sulfide and alkalinity, and some organic matter. Most of the SSCs are incinerated with the auxiliary fuel causing secondary pollution problems. The reuse of this waste is becoming increasingly important in terms of economical and environmental viewpoints. To denitrify wastewater with a low COD/N ratio, additional carbon sources are required. Therefore, autotrophic denitrification has received increasing attention. In this research, SSCs were injected as electron donors for sulfur-based autotrophic denitrification in a modified Ludzack-Ettinger (MLE) process. According to the variations in the SSCs dosage, the efficiencies of COD, nitrification and TN removal were evaluated. Heterotrophic denitrification by organic matter and autotrophic denitrification by SSCs were also investigated. As a result, adequate injection of SSCs showed stable autotrophic denitrification. To investigate some of the harmful effects of SSCs, fluorescence in situ hybridization (FISH) for nitrifying bacteria and Thiobacillus denitrificans was performed. Ammoniaoxidizing bacteria (AOB) and Nitrospira genus showed a similar pattern. Excessive injection of SSCs made nitrifying bacteria decrease and nitrification failure occur because of the high pH caused by the SSCs. The distribution of T. denitrificans was relatively uniform as SSCs were injected. This result means that T. denitrificans are available at high pH.

Keywords

References

  1. J. Surmacz-Gorska, A. Cichon and K. Miksch, Proceedings of the Env. Biotech., 1, 78 (1996)
  2. T. C. Zhang and P. L. Bishop, Wat. Environ. Res., 68, 1107 (1996)
  3. H. D. Montieth, T. R. Bridle and P. M. Sutton, Evaluation of industrial waste carbon sources for biological denitrification, Environ. Canada Wastewater Tech. Centre Report, No. EPS 4-WP-79-9 (1979)
  4. N. Narcis, M. Rebhun and C. Scheindorf, Wat. Res., 13, 93 (1979) https://doi.org/10.1016/0043-1354(79)90259-8
  5. J. R. Skinde and S. K. Bhagat, J. WPCF, 54, 370 (1982)
  6. T. J. Park, K. H. Lee, D. S. Kim and C.W. Kim, Wat. Sci. Tech., 34, 9 (1996)
  7. T. J. Park, K. H. Lee and J. H. Lee, Korean J. Chem. Eng., 15, 9 (1998) https://doi.org/10.1007/BF02705299
  8. B. Batchelor and A.W. Lawrence, J. WPCF, 50, 1986 (1978)
  9. G. Claus and H. J. Kutzner, Appl. Microbiol. Biotechnol., 22, 289 (1985)
  10. L. Koenig and H. Liu, Wat. Sci. Tech., 34, 496 (1996)
  11. T. C. Zhang and D.G. Lampe, Wat. Res., 33, 599 (1999) https://doi.org/10.1016/S0043-1354(98)00281-4
  12. S. E. Oh, Y. B. Yoo, J. C. Young and I. S. Kim, J. Biotech., 92, 1 (2001)
  13. J. P. van der Hock, W. A. Hijnen, C. A. van Bennekom and B. J. Mijnarends, J. Wat. SRT-Aqua, 41, 209 (1992)
  14. J. P. van der Hock, J.W. N. M. Kappelhof and W.A. M. Hijen, J. Chem. Tech. Biotech., 54, 197 (1992)
  15. J. P. van der Hock, J.W. N. M. Kappelhof and J. C. Schippers, J. Wat. SRT-Aqua, 43, 84 (1994)
  16. J. M. Flere and T. C. Zhang, J. Environ. Eng., 8, 721 (1999)
  17. S. H. Sheu and H. S. Weng, Wat. Res., 35, 2017 (2001) https://doi.org/10.1016/S0043-1354(00)00466-8
  18. J. Sipma, A. Svitelskaya, B. van der Mark, L.W.H. Pol, G. Lettinga, C. J. N. Buisman and A. J. H. Janssen, Wat. Res., 38, 4331 (2004) https://doi.org/10.1016/j.watres.2004.08.022
  19. I.G. Byun, J. H. Ko, Y. R. Jung, T. H. Lee, C.W. Kim and T. J. Park, Korean J. Chem. Eng., 22, 910 (2005) https://doi.org/10.1007/BF02705674
  20. A. Schramm, D. De Beer, M. Wagner and R. Amann, Appl. Environ. Microbiol., 64, 3480 (1998)
  21. A. Jang, P. L. Bishop, S. Okabe, S.G. Lee and I. S. Kim, Wat. Sci. Tech., 47, 49 (2002)
  22. S. H. Hur, J. J. Park, Y. J. Kim, J. C. Yu, I.G. Byun, T. H. Lee and T. J. Park, Korean J. Chem. Eng., 24, 93 (2007) https://doi.org/10.1007/s11814-007-5015-2
  23. B. Sharma and R. C. Albert, Wat. Res., 11, 897 (1977) https://doi.org/10.1016/0043-1354(77)90078-1
  24. E. S. Choi and H. S. Lee, Korean J. Chem. Eng., 13, 364 (1996) https://doi.org/10.1007/BF02705963
  25. W. Manz, M. Wagner, R. Amann and K.H. Schleifer, Wat. Res., 28, 1715 (1994) https://doi.org/10.1016/0043-1354(94)90243-7
  26. APHA, Standard methods for the examining of water and wastewater, 20th, American Public Health Association, Washington DC, USA (1998)
  27. S. Villaverde, P. A. García-Encina and F. Fdz-Polanco, Wat. Res., 31, 1180 (1997) https://doi.org/10.1016/S0043-1354(96)00376-4
  28. C. L. Laia and G.G. Jesus, J. Microbiol. Methods, 57, 69 (2004) https://doi.org/10.1016/j.mimet.2003.11.019
  29. H. Daims, A. Brühl, R. Amann, K. H. Schleifer and M. Wagner, System Appl. Microbiol., 22, 434 (1999) https://doi.org/10.1016/S0723-2020(99)80053-8
  30. B. K. Mobarry, M. Wagner, V. Urbain, E. Rittmann and D. A. Stahl, Appl. Environ. Microbiol., 62, 2156 (1996)
  31. M. Wagner, G. Rath, H. P. Koops, J. Flood and R. Amann, Wat. Sci. Tech., 34(1/2), 237 (1996)
  32. H. Daims, P. H. Nielsen, J. L. Nielsen, S. Juretschko and M. Wagner, Wat. Sci. Tech., 41(4/5), 85 (2000)
  33. T. Uki, Development of mRNA FISH by catalyed reporter deposition (CARD) methods targeting function gene of Aps in sulfate reducing bacteria, M.S.thesis, Department of environmental and urban engineering, Nagaoka national college of technology, Japan (2006)