Prevention of TNF-induced necrotic cell death by rottlerin through a Nox1 NADPH oxidase

Byun, Hee-Sun;Won, Min-Ho;Park, Kyeong-Ah;Kim, Young-Rae;Choi, Byung-Lyul;Lee, Hyun-Ji;Hong, Jang-Hee;Piao, Longzhen;Park, Jong-Sun;Kim, Jin-Man;Kweon, Gi-Ryang;Kang, Sung-Hyun;Han , Jin;Hur, Gang Min

  • Published : 20080000

Abstract

Keywords

References

  1. Bánfi B, Clark RA, Steger K, Krause KH. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 2003;278:3510-3 https://doi.org/10.1074/jbc.C200613200
  2. Byun HS, Park KA, Won M, Yang KJ, Shin S, Piao L, Kwak JY, Lee ZW, Park J, Seok JH, Liu ZG, Hur GM. Phorbol 12-myristate 13-acetate protects against tumor necrosis factor (TNF)-induced necrotic cell death by modulating the recruitment of TNF receptor 1-associated death domain and receptor-interacting protein into the TNF receptor 1 signaling complex: Implication for the regulatory role of protein kinase C. Mol Pharmacol 2006;70:1099-108 https://doi.org/10.1124/mol.106.025452
  3. Cheng G, Diebold BA, Hughes Y, Lambeth JD. Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 2006;281:17718-26 https://doi.org/10.1074/jbc.M512751200
  4. Fas SC, Fritzsching B, Suri-Payer E, Krammer PH. Death receptor signaling and its function in the immune system. Curr Dir Autoimmun 2006;9:1-17
  5. Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 1999;18:7719-30 https://doi.org/10.1038/sj.onc.1203249
  6. Garg AK, Aggarwal BB. Reactive oxygen intermediates in TNF signaling. Mol Immunol 2002;39:509-17 https://doi.org/10.1016/S0161-5890(02)00207-9
  7. Gschwendt M, Müller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G, Marks F. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 1994;199:93-8 https://doi.org/10.1006/bbrc.1994.1199
  8. Hehner SP, Hofmann TG, Ratter F, Dumont A, Droge W, Schmitz ML. Tumor necrosis factor-alpha-induced cell killing and activation of transcription factor NF-kappaB are uncoupled in L929 cells. J Biol Chem 1998;273:18117-21 https://doi.org/10.1074/jbc.273.29.18117
  9. Hennet T, Richter C, Peterhans E. Tumour necrosis factoralpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J 1993;289:587-92 https://doi.org/10.1042/bj2890587
  10. Kim JS, Kim JG, Jeon CY, Won HY, Moon MY, Seo JY, Kim JI, Kim J, Lee JY, Choi SY, Park J, Yoon Park JH, Ha KS, Kim PH, Park JB. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages. Exp Mol Med 2005;37:575-87 https://doi.org/10.1038/emm.2005.71
  11. Kim SY, Moon JH, Lee HG, Kim SU, Lee YB. ATP released from beta-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp Mol Med 2007a;39:820-7 https://doi.org/10.1038/emm.2007.89
  12. Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 2007b;26:675-87 https://doi.org/10.1016/j.molcel.2007.04.021
  13. Kurosu T, Tsuji K, Kida A, Koyama T, Yamamoto M, Miura O. Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-delta. Oncogene 2007;26:2975-87 https://doi.org/10.1038/sj.onc.1210117
  14. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004;4:181-9 https://doi.org/10.1038/nri1312
  15. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA, Liu ZG. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 2004;279:10822-8 https://doi.org/10.1074/jbc.M313141200
  16. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, Herceg Z, Wang ZQ, Schulze-Osthoff K. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 2002;13:978-88 https://doi.org/10.1091/mbc.01-05-0272
  17. Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 1999;91:1138-46 https://doi.org/10.1093/jnci/91.13.1138
  18. Mayhew TM, Myklebust R, Whybrow A, Jenkins R. Epithelial integrity, cell death and cell loss in mammalian small intestine. Histol Histopathol 1999;14:257-67
  19. Miyano K, Ueno N, Takeya R, Sumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 2006;281:21857-68 https://doi.org/10.1074/jbc.M513665200
  20. Murdoch WJ, Wilken C, Young DA. Sequence of apoptosis and inflammatory necrosis within the formative ovulatory site of sheep follicles. J Reprod Fertil 1999;117:325-9 https://doi.org/10.1530/jrf.0.1170325
  21. Ohba M, Ishino K, Kashiwagi M, Kawabe S, Chida K, Huh NH, Kuroki Y. Induction of differentiation in normal human keratinocytes by adenovirus-mediated introduction of the eta and delta isoforms of protein kinase C. Mol Cell Biol 1998;18:5199-207 https://doi.org/10.1128/MCB.18.9.5199
  22. Olive PL, Vikse CM, Vanderbyl S. Increase in the fraction of necrotic, not apoptotic, cells in SiHa xenograft tumours shortly after irradiation. Radiother Oncolv 1999;50:113-9 https://doi.org/10.1016/S0167-8140(98)00104-2
  23. Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA 2006;103:15038-43 https://doi.org/10.1073/pnas.0601945103
  24. Sata N, Klonowski-Stumpe H, Han B, Haussinger D, Niederau C. Menadione induces both necrosis and apoptosis in rat pancreatic acinar AR4-2J cells. Free Radic Biol Med 1997;23:844-50 https://doi.org/10.1016/S0891-5849(97)00064-6
  25. Soltoff SP. Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase C delta tyrosine phosphorylation. J Biol Chem 2001;276:37986-92
  26. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 2003;278:25234-46 https://doi.org/10.1074/jbc.M212856200
  27. Tillman DM, Izeradjene K, Szucs KS, Douglas L, Houghton JA. Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C. Cancer Res 2003;63:5118-25
  28. Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P. The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ 2003;10:889-98 https://doi.org/10.1038/sj.cdd.4401249
  29. Ueyama T, Geiszt M, Leto TL. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 2006;26:2160-74 https://doi.org/10.1128/MCB.26.6.2160-2174.2006
  30. Vanden Berghe T, Kalai M, Van Loo G, Declercq W, Vandenabeele P. Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 2003;278:5622-9 https://doi.org/10.1074/jbc.M208925200
  31. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 1998;187:1477-85 https://doi.org/10.1084/jem.187.9.1477