Distribution of dissolved methane on the seafloor at the gas hydrate drilling sites, Ulleung Basin

울릉분지 가스하이드레이트 시추 지점의 해저면 해수메탄 분포

Kang, Nyeon-Keon;Hwang, In-Gul;Kwon, Young-In
강년건;황인걸;권영인

  • Published : 20081000

Abstract

In 2007, gas hydrate drilling expedition was conducted at 5 gas hydrate potential sites in Ulleung Basin, East Sea, Korea. During the LWD(Logging While Drilling) phase, seafloor topography and distribution of methane concentration were investigated using depth and methane sensors, attached on the ROV(Remotely Operated Vehicle). Seafloor topography is represented by pockmarks and small mounds, along which high concentration of methane was detected. In the inner part of the pockmark, methane concentration is higher than that of the marginal part. Seepage of methane from deep and over-pressured sediments may be responsible for development of dome shape mounds and pockmark. During the drilling, methane concentration on the seafloor changed with drilling depth. These changes are thought to be related to the leakage of methane which is dissolved in the sediment pore and free gas zone below the BSR(Bottom Simulating Reflector), stimulated by the drilling.

2007년 동해 울릉 분지에 분포하는 5개 가스하이드레이트 유망지역에 대한 심부 시추가 수행되었다. 이 연구에서는 LWD(Logging While Drilling)동안 무인잠수정에 부착된 측정기를 이용하여 시추 예정지역의 해저지형과 해저면 메탄 농도 분포 특성을 조사하였다. 연구지역에서는 포크마크(pockmark)와 소규모 언덕지형이 나타난다. 연구지역의 해수 내 메탄 농도 분포를 측정한 결과 포크마크와 소규모 언덕지형을 따라 높은 메탄 농도 분포가 나타났다. 포크마크에서는 연변부 보다 함몰된 내부에서 상대적으로 높은 메탄 농도 분포를 보였다. 언덕지형에서는 언덕부와 인접한 곳에서 높은 메탄 농도가 나타났다. 이와 같은 지형은 퇴적물 내에 과압의 상태로 분포하는 메탄이 해수 중으로 누출되면서 해저면의 지형 변화를 가져와 포크마크 또는 소규모 언덕지형을 형성한 것으로 판단된다. 시추 동안 측정된 메탄 농도는 시추 깊이에 따라 변하는 양상을 보이며, 연구지역에서는 특히 BSR(Bottom Simulating Reflector) 예정 심도를 지난 이후 메탄 농도가 증가하는 경향이 나타난다. 이는 퇴적물 내 존재하던 메탄이나 BSR 하부의 자유 메탄가스가 시추로 인해 해저면으로 방출된 것으로 추정된다.

Keywords

References

  1. 김지훈, 박명호, 류병재, 이영주, 진영근, 2006, 울릉분지 퇴 적물, 공극수 및 공기층 가스의 지화학적 특징. 한국신재 생에너지학회:학술대회지, 한국신재생에너지학회 06 춘계학술대회 논문집, 373-376 p
  2. 류병재, 이영주, 김지훈, Riedel, M., Hyndman, R.D., 김일 수, 2006, 동해 울릉분지 남서부 천부 퇴적층에서의 가스 생성 및 천연가스 하이드레이트 형성 잠재력과 이들의 부존 증거. 한국신재생에너지학회:학술대회지, 한국신 재생에너지학회 06 추계학술대회 논문집, 50-53 p
  3. 박명호, 류병재, 김일수, 정태진, 이영주, 유강민, 2002, 울릉 분지 남서부 해역의 천부퇴적물에 대한 층서.퇴적학적 연구. 자원환경지질, 35, 115-125
  4. 이영주, 허식, 곽영훈, 김학주, 천종화, 한상준, 유해수, 1999, 울릉분지 남동부 시추 퇴적물 내에 함유되어 있는 천부가스의 특성. 한국석유지질학회지, 7, 35-40
  5. 이영주, 유동근, 김일수, 류병재, 2003, 울릉분지 남서부 심 해저 퇴적층에 분포하는 천부가스의 지화학 및 지구물리 특성. 자원환경지질, 36, 149-157
  6. 한국지질자원연구원, 2006, 가스 하이드레이트 지질.지 화학 연구. 산업자원부, 180-276
  7. Bohrmann, G., Ivanov, M., Foucher, J.,-P., Spiess, V., Bialas, J., Greinert, J., Weinrebe, W., Abegg, F., Alosi, G., Artemov, Y., Blinova, V., Drews, M., Heidersdorf, F., Krabbebhöft, A., Klaucke, I., Krastel, S., Leder, T., Polikarpov, I., Saburova, M., Schmale, O., Seifert, R., Volkonskaya, A., Zilmer, M., 2003, Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Marine Letters, 23, 239-249 https://doi.org/10.1007/s00367-003-0157-7
  8. Borowski, W.S., Paull, C.K., Ussler, W.III., 1997, Carbon cycling within the upper methanogenic zone of continental rise sediments: an example from the methane- rich sediments overlying the Blake Ridge gas hydrate deposits. Marine Chemistry, 57, 299-311 https://doi.org/10.1016/S0304-4203(97)00019-4
  9. Charlou, J.L., Donval, J.P., Fouquet, Y., Ondreas, H., Knoery, J., Cochonat, P., Levaché, D., Poirier, Y., Jean- Baptiste, P., Fourré, E., Chazallon, B., The ZAIROV Leg 2 Scientific Party, 2004, Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo-Angola Basin, Chemical Geology, 205, 405-425 https://doi.org/10.1016/j.chemgeo.2003.12.033
  10. Christodoulou, D., Papatheodorou, G., Ferentinos, G., Masson, M., 2003, Active seepage in two contrasting pockmark fields in the Patras and Corinth gulfs, Greece. Geo-Marine Letters, 23, 194-199 https://doi.org/10.1007/s00367-003-0151-0
  11. Chough, S.K., Lee H.J., Yoon, S.H., 2000, Marine Geology of Korea Seas, Amsterdam, 113
  12. Faure, K., Greinert, J., Pecher, I.A., Massoth, G.J., De Ronde, C.E.J., Wright, I.C., Baker, E.T., Olson, E.J., 2006, Methane seepage and its relation to slumping and gas hydrate at the Hikurangi margin, New Zealand. New Zealand Journal of Geology & Geophysics, 49, 503-516 https://doi.org/10.1080/00288306.2006.9515184
  13. Gay, A., Lopez, M., Ondreas, H., Charlou, J.-L., Sermondadaz, G., Cochonat, P., 2006, Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin. Marine Geology, 226, 81-95 https://doi.org/10.1016/j.margeo.2005.09.011
  14. Hovland, M., Svensen, H., 2006, Submarine pingoes: Indicators of shallow gas hydrate in a pockmark at Nyegga, Norwegian Sea. Marine Geology, 228, 15-23 https://doi.org/10.1016/j.margeo.2005.12.005
  15. Kvenvolden, K.A., 1988, Methane hydrate - A major reservoir of carbon in the shallow geosphere? Chemical Geology, 71, 41-51 https://doi.org/10.1016/0009-2541(88)90104-0
  16. Kvenvolden, K.A., 1993, A primer on gas hydrates. In: Howell, D.G. (eds.), The Future of Energy Gases. U.S. Geological Survey Professional Paper ,1570, 279-291
  17. Kvenvolden, K.A., 1995, A review of the geochemistry of methane in natural gas hydrate. Organic Geochemisty, 23, 997-1008 https://doi.org/10.1016/0146-6380(96)00002-2
  18. Kvenvolden, K.A., 1998, A primer on the geological occurrence of gas hydrate. In: Henriet, J.-P., Mienert, J. (eds.), Gas Hydrate: Relevance to World Margin Stability and Climate Change. Geological Society, London, 137 , 9-30 https://doi.org/10.1144/GSL.SP.1998.137.01.02
  19. Lamontagne, R.A., Rose-Pehrsson, S.L., Grabowski, K.E., Knies, D.L., 2001, Response of METS sensor to Methane Concentrations Found on the Texas-Louisiana Shelf in the Gulf of Mexico. Naval Research Laboratory, 1-9
  20. Lee. H.J., Chun, S.S., Yoon, S.H., Kim, S.R., 1993, Slope stability and geotechnical properties of sediment of the southern margin of Ulleung Basin, East Sea (Sea of Japan). Marine Geology, 110, 31-45 https://doi.org/10.1016/0025-3227(93)90103-3
  21. Limonov, A.F., van Weering, Tj.C.E., Kenyon, N.H., Ivanov, M.K., Meisner, L.B., 1997, Seabed morphology and gas venting in the Black Sea mudvolcano area: Observations with the MAK-1 deep-tow sidescan sonar and bottom profiler. Marine Geology, 137, 121-136 https://doi.org/10.1016/S0025-3227(96)00083-7
  22. Marinaro, G., Etiope, G., Gasparoni, F., Calore, D., Cenedese, S., Furlan, F., Masson, M., Favali, F., Blandin, J., 2004, GMM- a gas monitoring module for methane leakage from the seafloor. Environmental Geology, 46, 1053-1058 https://doi.org/10.1007/s00254-004-1092-2
  23. Orphan, V.J., Ussler, W.III., Naehr, T.H., House, C.H., Hinrichs, K.-U, Paull, C.K., 2004, Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chemical Geology, 205, 265-289 https://doi.org/10.1016/j.chemgeo.2003.12.035
  24. Park, M.H., Kim, I.S and Ryu, B.J., 2003, Framboidal pyrites in late Quanternary core sediments of the East Sea and their paleoenvironmental implications. Geo-Seience Journal, 7, 209-215
  25. Paull, C.K., Ussler, W.III., Peltzer, E.T., Brewer, P.G., Keaten, R., Mitts, P.J., Nealon, J.W., Greinert, J., Herguera, J.C., Perez, M.E., 2007, Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California. Deep-Sea Research II, 54, 1240-1267 https://doi.org/10.1016/j.dsr2.2007.04.009
  26. Somoza, L., Dıíaz-del-Río, V., León, R., Ivanov, M., Fernández-Puga, M.C., Gardner, J.M., Hernández- Molina, F.J., Pinheiro, L.M., Rodero, J., Lobato, A., Maestro, A., Vázquez, J.T., Medialdea, T., Fernández- Salas, L.M., 2003, Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: acoustic imagery, multibeam and ultrahigh resolution seismic data. Marine Geology, 195, 153-176 https://doi.org/10.1016/S0025-3227(02)00686-2
  27. Suess, E., Torres, M.E., Bohrmann, G., Collier, R.W., Greinert, J., Linke, P., Rehder, G., Trehu, A., Wallmann, K., Winckler, G., Zuleger, E., 1999, Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth and Planetary Science Letters, 170, 1-15 https://doi.org/10.1016/S0012-821X(99)00092-8