DOI QR코드

DOI QR Code

Background effect on the measurement of trace amount of uranium by thermal ionization mass spectrometry

열이온화 질량분석에 의한 극미량 우라늄 정량에 미치는 바탕값 영향

  • Received : 2008.10.06
  • Accepted : 2008.11.05
  • Published : 2008.12.25

Abstract

An experiment was performed for zone refined Re-filament and normal (nonzone refined) Re-filament to reduce the background effect on the measurement of low level uranium samples. From both filaments, the signals which seemed to come from a cluster of light alkali elements, $(^{39}K_6)^+$, $(^{39}K_5+^{41}K)^+$ and $PbO_2$ were identified as the isobaric effect of the uranium isotopes. The isobaric effect signal was completely disappeared by heating the filament about $2000^{\circ}C$ at < $10^{-7}$ torr of vacuum for more than 1.5 hour in zone refined Refilaments, while that from the normal Re-filaments was not disappeared completely and was still remained as 3 pg. of uranium as the impurities after the degassing treatment was performed for more than 5 hours at the same condition of zone refined filaments. A threshold condition eliminating impurities were proved to be at 5 A and 30 minutes of degassing time. The uranium content as an impurity in rhenium filament was checked with a filament degassing treatment using the U-233 spike by isotope dilution mass spectrometry. A 0.31 ng of U was detected in rhenium filament without degassing, while only 3 pg of U was detected with baking treatment at a current of 5.5 A for 1 hr. Using normal Re-filaments for the ultra trace of uranium sample analysis had something problem because uranium remains to be 3 pg on the filament even though degassed for long hours. If the 1 ng uranium were measured, 0.3% error occurred basically. It was also conformed that ionization filament current was recommended not to be increased over 5.5 A to reduce the background. Finally, the contents of uranium isotopes in uranium standard materials (KRISS standard material and NIST standard materials, U-005 and U-030) were measured and compared with certified values. The differences between them showed 0.04% for U-235, 2% for U-234 and 2% for U-236, respectively.

극미량 우라늄시료에 대한 열이온화 질량분석기를 이용하여 우라늄 동위원소 비 측정 및 정량과 관련하여 고순도(zone refined) 레늄필라멘트와 일반 레늄필라멘트로부터 오는 바탕값(background) 특성을 비교하였다. 두 종류 필라멘트에서 가벼운 알칼리금속원소들의 클러스터(cluster)인 $(^{39}K_6)^+$, $(^{39}K_5+^{41}K)^+$ 및 금속산화물($PbO_2$)로 추측되는 우라늄 동중원소영향(isobaric effect)을 확인하였다. 고순도 레늄필라멘트를 < $10^{-7}$ torr에서 약 $2000^{\circ}C$로 1.5 시간 이상 degassing 함으로 불순물들을 완전히 제거할 수 있었으나 일반 레늄필라멘트의 경우 5시간 이상 degassing을 하여도 약 3 pg-U이 남아있었다. 일반 레늄필라멘트에 대한 불순물 제거(degassing) 실험결과 5 A, 30 분이 불순물제거의 최소조건이었다. U-233을 spike로 사용, 동위원소희석 질량분석법으로 일반 레늄필라멘트 중 불순물로 포함된 우라늄 양을 측정한 결과 degassing을 하지 않은 필라멘트에서는 0.31 ng-U이 측정되었고, degassing (5.5 A, 1 hr.)을 한 것은 약 3 pg-U 이 측정되었다. 즉, 일반필라멘트의 경우, degassing을 하더라도 1 ng-U 시료에 대하여 0.3% 오차를 근본적으로 갖는 것을 알 수 있었다. 따라서 환경급 극미량 우라늄시료 측정에는 고순도 필라멘트를 degassing하여 사용해야 함을 알 수 있었다. 우라늄 측정 시 필라멘트 전류를 5.5 A로 하였을 때보다 6.0 A로 했을 때 불순물 우라늄 량이 1.5 배 더 크게 나타났다. 따라서 필라멘트 전류를 5.5 A 이상 올리지 않는 것이 바탕값 영향이 작음을 알 수 있었다. 우라늄 표준물질(KRISS 표준물질/NIST U-005, 030)을 사용하여 우라늄 동위원소 함량을 측정한 후 인증 값과 비교한 결과 U-235 는 0.04%, U-234, U-236는 2% 이내에서 각각 일치하였다.

Keywords

References

  1. D. L. Donohue, Journal of Alloys and Compounds, 11-18(1998)
  2. R. Ovaskainen, K. Mayer, W. DeBolle, D. Donohue and P. De Bievre, Proceedings of the 19th Annual Symposium on Safeguards and Nuclear Material Management, Montpellier, C. Foggi, F. Genoni (Eds.) Ispra, ESARDA No. 28 (1997)
  3. G. R. Choppin and J. Rydberg. Pergamon Press, Nuclear Chemistry, Theory and Applications, p. 460-461(1980)
  4. J. B. Osmond and Cowart, Atomic Energy review 14(4), (1976)
  5. R. L. Holden, Martin and I. L. Barnes, International Union of Pure & Appl. Chem., 55(7), 1119-1136(1983) https://doi.org/10.1351/pac198355071119
  6. G. Lafaye, F. Weber and H. Ohmoto, Economic Geology, 84(1989)
  7. E. W. Becker and W. Welcher, Mass Spectroscopy in Physics Research, National Bureau of Standards, Circular 522, Washington, DC, p. 225(1953)
  8. K. Habfast, I. T. Platzner, A. J. Walder and A. Goetz, Modern Isotope Ratio Mass Spectrometry, John Wiley & Sons Ltd, West Sussex, England, pp. 182(1997)
  9. S. R. Hart and A. Zindler, Int. J. Mass Spectrom. Ion Processes 89, 287301(1989)
  10. A. P. Dickin, Radiogenic Isotope Geology, Cambridge University Press, Cambridge, UK, p.452 (1995)
  11. S. Richter, A. Alonso, W. De Bolle, R. Wellum and P. D. P. Taylor, International Journal of Mass Spectrometry, 193, 9-14(1999) https://doi.org/10.1016/S1387-3806(99)00102-5
  12. Finnigan MAT Application Flash Report No. 7, 8. (1995)
  13. Sci-Tech Encyclopedia. McGraw-Hill Encyclopedia of Science and Technology. Copyright-2005 by The McGraw-Hill Companies, Inc
  14. G. H. Palmer, Advances in Mass Spectrometry, p. 89, Pergamon Press (1959)
  15. P. de Bievre, Adv. Mass Spectrom., 7A, 395(1978)
  16. K. G. Heumann, Int. J. Mass Spectrom. Ion Phys., 45, 87(1982) https://doi.org/10.1016/0020-7381(82)80101-0