Analyzing the Changes in Energy Oil Consumption Using 7 Major Decomposition Methods

주요 분해분석 방법론을 이용한 에너지유 소비 변화 분석

Kim, Hwa-Young;Kim, Ji-hyo
김화영;김지효

  • Published : 2008.04.28

Abstract

This study analyzed what factors most affected the changes in South Korean industries' energy oil consumption rate and determined the most applicable decomposition methodology. LMDI I, LMDI II, AMDI, Laspeyres, Paasche, Fisher, and Marshall-Edgeworth analysis methods were tested for the study. Multiplicative method, based on the energy intensity approach, was also tested. The results between the different analytic methods showed only minor differences and these differences did not have any significant effect on the interpretation of the results. The analysis showed that the energy intensity and the structural changes in the industries are the factors that most affected the energy oil consumption rate change in the South Korean industries. The only exception was during the International Monetary Fund (IMF) crisis period these factors only had minute affect. Among all the South Korean industries, the manufacturing industry has the most influence in the energy oil consumption rate. The decomposition analysis of the entire South Korean industries reflect that since 1997 the energy oil consumption rate for the manufacturing industry decreased due to diversification in energy source and increase in energy efficiency while the production rate for the industry increased.

국내 총 산업부문의 에너지유 사용량에 영향을 미치는 요인을 파악하고, 여러 분해분석 방법론의 적용성을 비교하기 위해 에너지 분해분석을 수행하였다. 연구에 사용된 분석 방법은 LMDI I, II 및 AMDI 방법과 Laspeyres, Paasche, Fisher 및 Marshall-Edgeworth 방법이며, 에너지 집약도 접근법에 의한 multiplicative 방법을 적용하였다. 방법론의 선택이 결과에 큰 영향을 미치지 않으며, 분석 결과 국내 총 산업부분의 에너지유 사용량 변화에 영향을 미치는 요인은 에너지집약도인 반면 구조변화는 외환위기를 제외하고는 그 영향이 미미하다. 세부 부문별로 제조업 부문의 영향이 절대적이며, 1997년 이후 에너지원 다변화 및 에너지 효율개선에 의해 제조업의 에너지유 사용이 감소된 반면 생산은 증가하였던 것이 총 산업부문의 에너지 분해분석 결과에 그대로 반영되었다.

Keywords

References

  1. 최기홍, 2001, "경제학적 지수이론에 의한 디비지아적분지 수의 재해석," 계량경제학보, 제15권 제1호, pp. 85-104
  2. Ang, B.W. and Lee, S.Y., 1994, "Decomposition of industrial energy consumption: Some methodological and application issues," Energy Economics, Vol. 16, No. 2, pp. 83-92 https://doi.org/10.1016/0140-9883(94)90001-9
  3. Ang, B.W., 1994, "Decomposition of industrial energy consumption," Energy Economics, Vol. 16, No. 3, pp. 163-174 https://doi.org/10.1016/0140-9883(94)90030-2
  4. Ang, B.W., 1995, "Decomposition methodology in industrial energy demand analysis," Energy, Vol. 20, No. 11, pp. 1081-1095 https://doi.org/10.1016/0360-5442(95)00068-R
  5. Ang, B.W. and Choi, K.H., 1997, "Decomposition of aggregate energy and gas emission intensities for industry: a refined Divisia index method," Energy Journal, Vol. 18, No. 3, pp. 59-73
  6. Ang, B.W. and Zhang, F.Q., 2000, "A survey of index decomposition analysis in energy and environmental studies," Energy, Vol. 25, No. 12, pp. 1149-1176 https://doi.org/10.1016/S0360-5442(00)00039-6
  7. Ang, B.W. and Liu, F.L., 2001, "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Vol. 26, No. 6, pp. 537-548 https://doi.org/10.1016/S0360-5442(01)00022-6
  8. Ang, B.W., 2004, "Decomposition analysis for policymaking in energy: which is the preferred method?" Energy Policy, Vol. 32, No. 9, pp. 1131-1139 https://doi.org/10.1016/S0301-4215(03)00076-4
  9. Ang, B.W., Liu, F.L. and Chung, H.S., 2004, "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Vol. 26, pp. 757-763 https://doi.org/10.1016/j.eneco.2004.02.002
  10. Ang, B.W. and Liu, N., 2007a, "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Vol. 35, No. 3, pp. 1426-1432 https://doi.org/10.1016/j.enpol.2006.04.020
  11. Ang, B.W. and Liu, N., 2007b, "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Vol. 35, pp. 238-246 https://doi.org/10.1016/j.enpol.2005.11.001
  12. Boyd, G., McDonald, J.F., Ross, M. and Hanson, D.A., 1987, "Separating the changing composition of US manufacturing production form energy efficiency improvements: a Divisia index approach," Energy Journal, Vol. 8, No. 2, pp. 77-96
  13. Doblin, C.P., 1988, "Declining energy intensity in the US manufacturing sector," Energy Journal, Vol. 9, No. 2, pp. 109-135
  14. Fisher, I., 1972, The making of index numbers, Boston, MA: Houghton Mifflin
  15. Greening, L.A., Davis, W.B., Schipper, L. and Khrushch, M., 1997, "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Vol. 19, pp. 375-390 https://doi.org/10.1016/S0140-9883(96)01028-6
  16. Greening, L.A., Boyd, G. and Roop, J.M., 2007, "Modeling of industrial energy consumption: An introduction and context," Energy Economics, Vol. 29, No. 4, pp. 599-608 https://doi.org/10.1016/j.eneco.2007.02.011
  17. Hoekstra, R. and Bergha, J.J.C.J.M.v.d., 2003, "Comparing structural and index decomposition analysis," Energy Economics, Vol. 25, pp. 39-64 https://doi.org/10.1016/S0140-9883(02)00059-2
  18. Hirst, E., Marlay, R., Greene, D. and Barnes, R., 1983, "Recent changes in US energy consumption: what happened and why," Annual Review of Energy, Vol. 8, pp. 193-245 https://doi.org/10.1146/annurev.eg.08.110183.001205
  19. Liu, F.L. and Ang, B.W., 2003, "Eight methods for decomposing the aggregate energy-intensity of industry," Applied Energy, Vol. 76, No. 1-3, pp. 15-23 https://doi.org/10.1016/S0306-2619(03)00043-6
  20. Sun, J. W. and Ang, B.W., 2000, "Some properties of an exact energy decomposition model," Energy, Vol. 25, pp. 1177-1188 https://doi.org/10.1016/S0360-5442(00)00038-4