DOI QR코드

DOI QR Code

Deposition and Characterization of Porous Low-Dielectric-Constant SiOC(-H) Thin Films Deposited from $TES/O_2$ precursors by Using Plasma-Enhanced Chemical Vapor Deposition

  • Navamathavan, Rangaswamy (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Kim, Chang-Young (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Jung, An-Soo (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Choi, Chi-Kyu (Research Institute for Basic Science, Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Lee, Heon-Ju (Department of Mechanical, Energy and Production Engineering, Cheju National University)
  • Published : 2008.07.01

Abstract

Low-dielectric-constant SiOC(-H) thin films were deposited on p-type Si(100) substrates by using plasma enhanced chemical vapor deposition (PECVD) from triethoxysilane (TES; $C_6H_{16}O_3Si$) and oxygen gas as precursors. A detailed characterization, such as the chemical structure, bonding configurations and dielectric constant (k), of the SiOC(-H) films was performed. A possible mechanism responsible for the reduction in the dielectric constant of the SiOC(-H) is described. In the SiOC(-H) film, the $CH_3$ group as an end group is introduced into the -O-Si-O- network, thereby reducing the density to decrease the dielectric constant. X-ray photoelectron spectroscopic (XPS) studies were carried out to study the binding energies of Si-C, O-Si-O, C-C(H), C=C, C-O and C=O bonds in the SiOC(-H) films as functions of the flow rate ratio. The dielectric constant of the SiOC(-H) film was evaluated by using the C-V measurements for a metal-insulator-semiconductor (MIS), Al/SiOC(-H)/p-Si(100), structure.

Keywords

Acknowledgement

This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea Government Ministry of Science and Technology (MOST), (No. R01-2007-000-10181-0). The authors involved in this study were supported by a grant from the 2nd Stage BK-21 Project.

References

  1. Y. Xu, Y. Tsai, K. N. Tu, B. Zhao, Q. Z. Liu, M. Brongo, G. T. T. Sheng and C. H. Tung, Appl. Phys. Lett. 75, 853 (1999) https://doi.org/10.1063/1.124535
  2. M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho and P. S. Ho, Annu. Rev. Mater. Sci. 30, 645 (2000) https://doi.org/10.1146/annurev.matsci.30.1.645
  3. M. Mikhail, R. Baklanov and K. Maex, Phil. Trans. R. Soc. A 364, 201 (2006) https://doi.org/10.1098/rsta.2005.1679
  4. K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma and Z. S. Yanovitskaya, J. Appl. Phys. 93, 8790 (2003) https://doi.org/10.1063/1.1555318
  5. K. Endo, K. Shinoda and T. Tatsumi, J. Appl. Phys. 86, 2739 (1999) https://doi.org/10.1063/1.371119
  6. K. C. Tsai, W. F. Wu and C. G. Chao, J. Electron. Mater. 35, 1523 (2006) https://doi.org/10.1007/s11664-006-0143-8
  7. A. S. Zakirov, R. Navamathavan, Y. J. Jang, A. S. Jung, C. K. Choi and K. M. Lee, J. Korean Phys. Soc. 50, 1809 (2007) https://doi.org/10.3938/jkps.50.1809
  8. C. S. Yang, Y. H. Yu, K. M. Lee, H. J. Lee and C. K. Choi, Thin Solid Films 435, 165 (2003) https://doi.org/10.1016/S0040-6090(03)00356-0
  9. R. Navamathavan, A. S. Jung, H. S. Kim, Y. J. Jang and C. K. Choi, J. Korean Phys. Soc. 50, 1803 (2007) https://doi.org/10.3938/jkps.50.1803
  10. T. K. S. Wong, B. Liu, B. Narayanan, V. Ligatchev and R. Kumar, Thin Solid Films 462-463, 156 (2004) https://doi.org/10.1016/j.tsf.2004.05.048
  11. K. Meera, C. S. Yang and C. K. Choi, J. Korean Phys. Soc. 45, S944 (2004)
  12. R. Navamathavan, S. H. Kim, Y. J. Jang, A. S. Jung and C. K. Choi, Appl. Surf. Sci. 253, 8788 (2007) https://doi.org/10.1016/j.apsusc.2007.04.075
  13. A. Grill, V. Patel, K. P. Rodbell, E. Huang, M. R. Bak- lanov, K. P. Mogilnikov, M. Toney and H. C. Kim, J. Appl. Phys. 94, 3427 (2003) https://doi.org/10.1063/1.1599957
  14. R. M. Almedia and C. G Pantano, J. Appl. Phys. 68, 4225 (1990) https://doi.org/10.1063/1.346213
  15. Y. Lin, T. Y. Tsui and J. J. Vlassak, J. Electrochem. Soc. 153, F144 (2006) https://doi.org/10.1149/1.2202120
  16. C. Marcolli and G. Calzaferri, J. Phys. Chem. B 101, 4925 (1997) https://doi.org/10.1021/jp9707596
  17. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed. (John Wiley and Sons Ltd., Lcich- ester, 2001), p. 242
  18. C. Marcolli and G. Calzaferri, Appl. Organometallic Chem. 13, 213 (1999) https://doi.org/10.1002/(SICI)1099-0739(199904)13:4<213::AID-AOC841>3.0.CO;2-G
  19. C. Onneby and C. G. Pantano, J. Vac. Sci. Technol. A 15, 1597 (1997) https://doi.org/10.1116/1.580951
  20. J. Heo, H. J. Kim, J. H. Han and J. W. Shon, Thin Solid Films 515, 5035 (2007) https://doi.org/10.1016/j.tsf.2006.10.095
  21. H. Li, T. Xu, C. Wang, J. Chen, H. Zhou and H. Liu, Diamond Relat. Mater. 15, 1585 (2006) https://doi.org/10.1016/j.diamond.2005.12.048
  22. J. F. Zhao, P. Lemonie, Z.H. Liu, J. P. Quinn, P. Maguire and J. A. McLaughlin, Diamond Relat. Mater. 10, 1070 (2001) https://doi.org/10.1016/S0925-9635(00)00544-6
  23. A. S. Glaude, L. Thomas, E. Tomasella, J. M. Badie and R. Berjoan, Surf. Coat. Technol. 201, 174 (2006) https://doi.org/10.1016/j.surfcoat.2005.11.076
  24. B. P. Swain, Surf. Coat. Technol. 201, 1589 (2006) https://doi.org/10.1016/j.surfcoat.2006.02.029
  25. T. Xu, S. Yang, J. Lu, Q. Xue, J. Li, W. Guo and Y. Sun, Diamond Relat. Mater. 10, 1441 (2001) https://doi.org/10.1016/S0925-9635(00)00500-8
  26. I. Solomon, M. P. Schmidt, C. Senemand and M. Dris- skhodja, Phys. Rev. B 38, 13263 (1988) https://doi.org/10.1103/PhysRevB.38.13263