Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar $\beta$amyloid peptide (1-42) stimulated microglia

Moon, Ju-Hyun;Kim, Soo-Yoon;Lee, Hwan-Goo;Kim, Seung U.;Lee, Yong-Beom

  • Published : 20080000

Abstract

Keywords

References

  1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL. Inflammation and Alzheimer's disease. Neurobiol Aging 2000;21:383-421 https://doi.org/10.1016/S0197-4580(00)00124-X
  2. Ballerini P, Di Iorio P, Ciccarelli R, Nargi E, D'Alimonte I, Traversa U, Rathbone MP, Caciagli F. Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuroreport 2002;13:1789-92 https://doi.org/10.1097/00001756-200210070-00019
  3. Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F. $\beta$ -amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J Biol Chem 1999;274:15493-9 https://doi.org/10.1074/jbc.274.22.15493
  4. Buisson B, Bertrand D. Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci 2002;23:130-6 https://doi.org/10.1016/S0165-6147(00)01979-9
  5. Burghaus L, Schutz U, Krempel U, de Vos RA, Jansen Steur EN, Wevers A, Lindstrom J, Schroder H. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res 2000;76:385-8 https://doi.org/10.1016/S0169-328X(00)00031-0
  6. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 1976;2:1403
  7. de la Monte SM, Wands JR. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease. J Alzheimers Dis 2006;9:167-81 https://doi.org/10.3233/JAD-2006-9209
  8. De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L. Activation of $\alpha$7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2005;2:4-13 https://doi.org/10.1186/1742-2094-2-4
  9. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F. Purinergic modulation of interleukin-$1\beta$ release from microglial cells stimulated with bacterial endotoxin. J Exp Med 1997;185:579-82 https://doi.org/10.1084/jem.185.3.579
  10. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004;74:363-96 https://doi.org/10.1016/j.pneurobio.2004.09.006
  11. Kim KY, Kim MY, Choi HS, Jin BK, Kim SU, Lee YB. Thrombin induces IL-10 production in microglia as a negative feedback regulator of TNF-$\alpha$ release. Neuroreport 2002;13:849-52 https://doi.org/10.1097/00001756-200205070-00022
  12. Kim SY, Moon JH, Lee HG, Kim SU, Lee YB. ATP released from $\beta$-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp Mol Med 2007;39:820-7 https://doi.org/10.1038/emm.2007.89
  13. Liu GJ, Kalous A, Werry EL, Bennett MR. Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol Pharmacol 2006;70:851-9 https://doi.org/10.1124/mol.105.021436
  14. McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T. Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. Neurology 1984;34:741-5 https://doi.org/10.1212/WNL.34.6.741
  15. Mousavi M, Hellstrom-Lindahl E, Guan ZZ, Shan KR, Ravid R, Nordberg A. Protein and mRNA levels of nicotinic receptors in brain of tobacco using controls and patients with Alzheimer's disease. Neuroscience 2003;122:515-20 https://doi.org/10.1016/S0306-4522(03)00460-3
  16. Muir JL. Acetylcholine, aging, and Alzheimer's disease. Pharmacol Biochem Behav 1997;56:687-96 https://doi.org/10.1016/S0091-3057(96)00431-5
  17. Newhouse PA, Potter A, Levin ED. Nicotinic system involvement in Alzheimer's and Parkinson's diseases. Implications for therapeutics. Drugs Aging 1997;11:206-28 https://doi.org/10.2165/00002512-199711030-00005
  18. Oddo S, LaFerla FM. The role of nicotinic acetylcholine receptors in Alzheimer's disease. J Physiol Paris 2006;99:172-9 https://doi.org/10.1016/j.jphysparis.2005.12.080
  19. O'Neill MJ, Murray TK, Lakics V, Visanji NP, Duty S. The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord 2002;1:399-411 https://doi.org/10.2174/1568007023339166
  20. Park HJ, Lee PH, Ahn YW, Choi YJ, Lee G, Lee DY, Chung ES, Jin BK. Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur J Neurosci 2007;26:79-89 https://doi.org/10.1111/j.1460-9568.2007.05636.x
  21. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J Biol Chem 2003;278:13309-17 https://doi.org/10.1074/jbc.M209478200
  22. Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance $\beta$-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 2002;83:973-83 https://doi.org/10.1046/j.1471-4159.2002.01210.x
  23. Seo DR, Kim KY, Lee YB. Interleukin-10 expression in lipopolysaccharide-activated microglia is mediated by extracellular ATP in an autocrine fashion. Neuroreport 2004;15:1157-61 https://doi.org/10.1097/00001756-200405190-00015
  24. Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun 2000;273:5-9 https://doi.org/10.1006/bbrc.2000.2897
  25. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J. Cholinergic modulation of microglial activation by $\alpha$7 nicotinic receptors. J Neurochem 2004;89:337-43 https://doi.org/10.1046/j.1471-4159.2004.02347.x
  26. Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006;8:2021-37 https://doi.org/10.1089/ars.2006.8.2021
  27. Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andra M, Matsubayashi H, Sakai N, Kohsaka S. Microglial $\alpha$7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 2006;83:1461-70 https://doi.org/10.1002/jnr.20850
  28. Takahashi HK, Iwagaki H, Hamano R, Yoshino T, Tanaka N, Nishibori M. Effect of nicotine on IL-18-initiated immune response in human monocytes. Leukoc Biol 2006;80:1388-94 https://doi.org/10.1189/jlb.0406236
  29. Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003;306:821-7 https://doi.org/10.1124/jpet.102.041616
  30. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L. Nicotinic acetylcholine receptor $\alpha$7 subunit is an essential regulator of inflammation. Nature 2003;421:384-8 https://doi.org/10.1038/nature01339