Fabrication of Nitrogen Doped p-ZnO and ZnO Light-Emitting Diodes on Sapphire

Wei, Z. P.;Lu, Y.M.;Shen, D.Z.;Zhang, Z.Z.;Yao, B.;Li, B.H.;Zhang, J.Y.;Zhao, D.X.;Fan, X.W.;Tang, Z. K.

  • Published : 20080000

Abstract

Nitrogen-doped p-type ZnO thin films were grown on $c$-plane sapphire (Al$_2$O$_3$) substrates by plasma-assistant molecular beam epitaxy, where O$_2$ and N$_2$ were introduced via a RF plasma source simultaneously. In situ optical emission spectra of the plasma were employed to monitor the chemical species in the active gas sources, one of the most important growth parameters. By adjusting the growth parameters, we confirm the optimal condition for p-type doping growth. The reproducible p-type ZnO thin films have the hole concentration ($N_A-N_D$) up to 1.0 $\times$ 10$^{18}$ cm$^{-3}$ and the resistivity of 6 $\Omega$cm. A ZnO LED was fabricated by depositing undoped n-type ZnO on the p-type layer. Electroluminescence spectra centered about 430 nm were obtained even at 350 K.

Keywords

References

  1. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998) https://doi.org/10.1063/1.121620
  2. Y. Yan, S. B. Zhang and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001) https://doi.org/10.1103/PhysRevLett.86.5723
  3. X. L. Guo, H. Tabata and T. Kawai, Opt. Mater. 19, 229 (2002) https://doi.org/10.1016/S0925-3467(01)00224-5
  4. J. Z. Wang, G. T. Du, B. J. Zhao, X. T. Yang, Y. T. Zhang, Y. Ma, D. L. Liu, Y. C. Chang, H. S. Wang, H. J. Yang and S. R. Yang, J. Cryst. Growth 255, 293 (2003) https://doi.org/10.1016/S0022-0248(03)01241-7
  5. A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Nat. Mater. 4, 42 (2005) https://doi.org/10.1038/nmat1284
  6. S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan and Z. K. Tang, Appl. Phys. Lett. 88, 031911 (2006) https://doi.org/10.1063/1.2166686
  7. J. Wang, G. Du, B. Zhao, X. Yang, Y. Zhang, Y. Ma, D. Liu, Y. Chang, H. Wang, H. Yang and S. Yang, J. Cryst. Growth 255, 293 (2003) https://doi.org/10.1016/S0022-0248(03)01241-7
  8. E.-C. Lee, Y.-S. Kim, Y.-G. Jin and K. J. Chang, Phys. Rev. B 64, 085120 (2001) https://doi.org/10.1103/PhysRevB.64.085120
  9. E. Iliopoulos, A. Adikimenakis, E. Dimakis, K. Tsagaraki, G. Konstantinidis and A. Georgakilas J. Cryst. Growth 278, 426 (2005) https://doi.org/10.1016/j.jcrysgro.2005.01.013
  10. T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A.Wolden, J. Appl. Phys. 96, 7036 (2004) https://doi.org/10.1063/1.1804614
  11. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch and G. Cantwell, Phys. Rev. B 57, 12151 (1998) https://doi.org/10.1103/PhysRevB.57.12151
  12. R. P. Vaudo, J. W. Cook and Jr., J. F. Schetzina, J. Crystal. Growth 138, 430 (1994) https://doi.org/10.1016/0022-0248(94)90846-X
  13. P. A. Sa and J. Loureiro, J. Phys. D: Appl. Phys. 30, 2330 (1997)
  14. J. Liu, F. Sun and H. Yu, Curr. Appl. Phys. (2004)
  15. K. Ohkawa, T. Karasawa and T. Mitsuyu, J. Crystal Growth 111, 759 (1991)
  16. P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954) https://doi.org/10.1139/p54-013
  17. N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds and D. C. Look, Appl. Phys. Lett. 80, 1334 (2002) https://doi.org/10.1063/1.1450041