Comparison of normal males and parients with knee osteoarthritis in the joint impact and moment during walking

퇴행성 무릎 관절염 환자와 정상인 보행의 관절 충격과 내력 비교

Ryu, Ji-Seon
류지선

  • Published : 20080000

Abstract

To compare the impact force, impact shock, internal forces and moments, ten patients with Grade II-III knee osteoarthritis (body mass: 69.2±8.8kg, height: 169.8±4.6cm, age: 61.9±3.1yrs.) and ten healthy subjects (body mass: 66.1±13.6, height: 164.5±7.2cm, age: 62.7±2.1yrs.) were studied during level walking. Data were collected using seven ProReflex MCU 240 cameras, two forces plates, and accelerometers. The inverse dynamics approach was used to determine internal forces at the ankle and knee and these forces were normalized in body weight and height and time (percent stride). The primary findings were: 1)the patients with knee OA had a significantly small peak of impact force and less time up to its peak compared to healthy subjects; 2) Shock attenuation, calculating from a transfer function between the tibia and thigh frequency spectra of accelerometer signal, was less in OA group; 3) The superio-inferior force of the ankle was greater in OA group, but the anterio-posterior force was less. healthy subjects had significantly greater knee superio-inferior and medio-lateral forces; 4) Ankle moments were similar in shape and magnitude for two groups, but internal-external moment and flexion-extension moment were greater in OA group.

본 연구는 보행 시 퇴행성관절염 환자들과 정상인들과의 운동역학적 특성을 규명하기 위해 충격력, 충격쇼크, 하지 관절의 내력 등을 비교 분석했다. 분석을 위해 ProReflex MCU 240 고속 카메라 7대와 압력판 2대, 두 개의 가속도계가 이용되었다. 분석한 결과 충격력의 수동 피크 크기와 이의 발생 시간은 관절염 퇴행성 무릎 관절염 환자 집단보다 정상인 집단이 컸고, 느렸으며, 충격 범위에 해당하는 경골과 대퇴의 가속도 신호의 파워 값은 정상인보다 퇴행성 무릎 관절염 환자 집단이 크게 나타났다. 이들 충격 쇼크는 무릎관절을 통해 두 집단 흡수되었지만 정상인 집단이 퇴행성 무릎 관절염 환자 집단보다 컸다. 한편 발목 관절의 상하에 작용하는 힘은 퇴행성 무릎 관절염 환자 집단이 컸으나, 전후 방향으로 작용하는 힘은 정상인 집단이 컸다. 또한 무릎 관절의 상하, 좌우 방향으로 작용하는 힘들은 정상인 집단이 컸다. 발목 관절의 모멘트는 두 집단 비슷한 크기를 보였으나, 무릎 관절의 내외측 회전과 굴신 모멘트는 정상인보다 퇴행성 무릎 관절염 환자 집단이 컸다.

Keywords

References

  1. 고영진(2000). 퇴행성 관절염의 병인 및 진단, 대한재활의학회 2003년 추계 학술대회, 3-12
  2. 류지선(2006). 노인 보행 시 지면반력 신호의 주파수 크기와 Variability 분석, 한국체육학회지, 45(5), 457-464
  3. 류지선(2007). 비선형 시계열 분석기법에 의한 선호 걷기의 동적 안정성 비교분석. 한국체육학회지, 46(2), 431-439
  4. 류지선B(2007). 달리기 시도 수 증가에 따른 VGRF신 호성분의 Variability 분석. 한국운동역학회지, 17(1), 129-134
  5. Areblad, M, Nigg, B. M, Ekstrand, J., Olsson, K O., Ekstrom, H (1990). Three dirrensional measurement of rear motion during running. Journal of Biomechanics, 23, 933-940 https://doi.org/10.1016/0021-9290(90)90358-A
  6. Alexander, R, & Jayes, A S. (1980). Fourier analysis of forces exerted in walking and running. Journal of Biomechanics, 13, 383-390 https://doi.org/10.1016/0021-9290(80)90019-6
  7. Andriacchi, T. P., Ogle, J. A, & Galante, J. 0. (1977). Walking speed as a basis for normal and abnormal gait measurements, Journal of Biomechanics, 10, 261-268 https://doi.org/10.1016/0021-9290(77)90049-5
  8. Antonsson, E. K, & Mann, R W. (1985). The frequency content of gait. Journal of Biomechanics, 18, 39-47 https://doi.org/10.1016/0021-9290(85)90043-0
  9. Bruggemann, G. P., Arndt, A, Kersting. U. G., & Knicker, A J. (1995). Influence of fatigue on impact force and rearfoot motion during running. Proceedings of ISB 1995, 132
  10. Buzzi, U. H, Stergiou., N., Kurz, M, Hageman, P. A, Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18, 435-443 https://doi.org/10.1016/S0268-0033(03)00029-9
  11. Cavanagh, P. R & Lafortune, M. A. (1980). Ground reaction forces in distance running. Journal of Biomechanics, 13, 397-406 https://doi.org/10.1016/0021-9290(80)90033-0
  12. Cavanagh, P. R, Valiant, G. A, & Misevich, K. W. (1984). Biological aspects of modeling shoe/foot interaction during running. In E. Frederick(Ed.), Sport shoes and playing surfaces. Champaign, IL: Human Kinetics, 24-46
  13. Chu, M. L, Yazdani-Ardakani, S., Gradisar, I. A, & Askew, M J. (1986). An in vivo simulation study of impulsive force transmission along the lower skeletal extremity. Journal of Biomechanics, 19, 979-987 https://doi.org/10.1016/0021-9290(86)90115-6
  14. Clarke, T. E, Cooper, L. B., Clark, D. E, & Hamill, C. L. (1985). The effect of increased running speed upon peak shank deceleration during ground contact. Biomechanics lX-B(pp.101-105). Champaign,IL: Human Kinetics
  15. Collins, J. J., & Whittle, M. W. (1989). Impulsive forces during walking and their clinical implication. Clinical Biomechanics, 4, 179-187 https://doi.org/10.1016/0268-0033(89)90023-5
  16. Derrick T. R, Hamill J., Caldwell G. E (1998). Energy absorption of impacts during running at various stride lengths. Medicine Science in Sparts Exercise 30, 128-135
  17. Darren, S., Stergiou P., Nigg, B. M, Lun, V. M. Y., & Meeuwisse, W. H (2000). The relationship between impact forces and running injuries, Canadian Socity for Biomechanics, 43
  18. Detmer, D. E (1986). Chronic shin splints classification and managerrent of medial tibial stress syndrome. Sport Medicine, 3, 436-446 https://doi.org/10.2165/00007256-198603060-00005
  19. Eng, J. J., Winter, D. A (1995). Kinetic analysis of the lower limbs during walking what information can be gaind from a 3-dimensional model? Journal of Biomechanics, 28(6), 753-758 https://doi.org/10.1016/0021-9290(94)00124-M
  20. Frederick, E. C. (1986). Kinematically mediated effects of sport shoe design: A review. Journal of Sports Sciences, 4, 169-184 https://doi.org/10.1080/02640418608732116
  21. Frederick, E. C, Hagy, J. L, & Mann, R. A. (1981). The prediction of the vertical impact force during running. Jounal of Biomechanics, 14, 498
  22. Hamill, J., Bates, B. T., Knutzen, K. M, & Sawhill, J. A. (1983). Variations in ground reaction force parameters at different running speeds. Human Movement Science, 2, 47-56 https://doi.org/10.1016/0167-9457(83)90005-2
  23. Hamill, C. L, Clarke, T. E, Federick, E. C, Goodyear, L J., & Howley, E T. (1984). Effects of grade running on kinematics and impact force. Medicine Scence inr Sports Exercise, 16, 185
  24. Hamill, J., Derrick, T. R, Holt, K G. (1995). Shock attenuation and stride frequency during running. Human Movement Science, 14, 45-60 https://doi.org/10.1016/0167-9457(95)00004-C
  25. Hreljac, A, Marshall, R. N., & Hume, P. A (2000). Evaluation of lower extremity overuse injury potential in runners. Medicine and Sdence in Sparts and Exercise, 32, 1635-1641
  26. Hurwitz, D. E, Sunmer, D. R (1998). Dynamic knee loads during gait predict proximal tibial bone distribution Journal of Biomechanics, 31, 423-430 https://doi.org/10.1016/S0021-9290(98)00028-1
  27. James, E S. (1988). Measurement of transmissibility for the human spine during walking and running. Ph D. dissertation Rheumatism Research Unit, University of Leeds, Leeds LS2, 9NZ, UK
  28. Kaufman, K R, Hughes,C, Morrey, B. F., Morrey, M, & An, K (2001). Gait characteristics of patients with knee osteoarthritis. Journal of Biomechanics, 34, 907-915 https://doi.org/10.1016/S0021-9290(01)00036-7
  29. Kowalk, D., Duncan, J. A, & Vaughan, C. L. (1996). Abduction-adduction moments at the knee during stair ascent and descent. Journal of Biomechanics, 29(3), 383-388 https://doi.org/10.1016/0021-9290(95)00038-0
  30. Lufortune, M A, Hennig, E. M, Lake, M J., & Belisle, P. (1995). Cushioning role of initial knee angle upon impact loading. Proceedings of ISB, 522-523
  31. Light, L. H, Mclellan, G. E, & Klenennan, L (1980). Skeletal transients on heel strike in normal walking with different footwear. Journal of Biomechanics, 13, 477-480 https://doi.org/10.1016/0021-9290(80)90340-1
  32. McNicholas, M. J., Gibbs,S., Linskell, J. R, Barker, S., McGurty, D., & Rowley, D. I. (2000). The influence of external knee moments on the outcome of total menisecectomy. A comparison of radiological and 3-D gait analysis measurements. Gait & Posture, 11, 233-238 https://doi.org/10.1016/S0966-6362(00)00050-3
  33. Milgrom, C, Giladi, M, Kashtan, H, Simkin, A, Chisin, R, Margulies, J., Steinberg. R, Aharonson, Z., & Stein, M (1985). A prospective study of the effect of a shockabsorbing orthotic device on the incidence of stress fractures in military recruits. Foot and Ankle, 6, 101-101 https://doi.org/10.1177/107110078500600209
  34. Mizrahi, J., Verbitsky, O., & Isakov, E (2000). Shock accelerations and attenuation in downhill and level running. Clinical Biomechanics, 15, 15-20 https://doi.org/10.1016/S0268-0033(99)00033-9
  35. Munro, C. F., Miller, D. I., & FugIevand, A J. (1987). Ground reaction forces in running: A reexamination Journal of Biomechanics, 20, 147-155 https://doi.org/10.1016/0021-9290(87)90306-X
  36. Nigg. B. M, Bahlsen, H A, Luethi, S. M, & Stokes, S. (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20, 951-959 https://doi.org/10.1016/0021-9290(87)90324-1
  37. Nigg B. M, Cole G K, & Bruggemann, G P. (1995). Impact forces during heel toe running. Journal of Applied Biomechanics, 11, 407-432 https://doi.org/10.1123/jab.11.4.407
  38. Radin, E. L, Orr, R B., Kelman, J. L, Paul, I. L, & Rose, R M (1982). Effect of prolonged walking on concrete on the knees of sheep. Journal of Biomechanics, 15, 487-492 https://doi.org/10.1016/0021-9290(82)90002-1
  39. Radin, E. L, Paul, I. L, & Rose, R. M. (1972). Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet, 519-522
  40. Schnitzer, T. J., Popovich, J. M (1993). Effect of piroxicam on gait in patients with osteoarthritis of the knee. Arthritis and rheumatism, 36(9), 1207-1213 https://doi.org/10.1002/art.1780360905
  41. Sharma,L, Hurwitz, D. E. (1998). Knee adduction morrent, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis, Arthritis and rheumatism, 41(7), 1233-1240 https://doi.org/10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
  42. Shorten, M R, & Winslow, D. S. (1992). Spectral analysis of impact shock during running. Intenational Journal of Sport Biomechanics, 8, 288-304 https://doi.org/10.1123/ijsb.8.4.288
  43. Simon, S. R, Radin, E. L, & Paul, I. L (1972). The response of joints to impact loadings, Part II: In vivo behavior of subchondral bone, Journal of Biomechanics, 5, 267-272 https://doi.org/10.1016/0021-9290(72)90042-5
  44. Stauffer, R N., Chao, E. Y. S., (1997). Biomechanical gait analysis of the diseased knee joint. Clinical orthopaedics and related Research, 126, 246-255
  45. Stergiou, N., Giakas. G, Byme, J. E., & Pomeroy. V. (2002). Frequency domain characteristics of ground reaction forces during walking of young and elderly females, Clinical Biomechanics, 17, 615-617 https://doi.org/10.1016/S0268-0033(02)00072-4
  46. Valiant, G A, McMahon, T. A, & Frederick, E. C (1987). A new test to evaluate the cushioning properties of athletic shoes. In B. Jonsson (Ed.), Biomechanics X-B (pp.937-941). Champaign, IL: Human Kinetics
  47. Vaughan, C L, Davis, B., & O'connor, J. C (1992). Gait analysis laboratory. Human Kinetics Publishers. Champaign, IL:
  48. Voloshin, A S., Burger, C P., Wosk, J., & Arcan, M (1985). An in vivo Evaluation of the leg's shock-absorbing capacity. In:B. Winter et al(Ed), Biomechanics IX- B (112-116). Champaign, IL: Human Kinetics
  49. Voloshin, A. S., & Wosk, J. (1982). An in vivo study of low back pain and shock absorption in the human locomotor system Journal of Biomechanics, 15, 21-27 https://doi.org/10.1016/0021-9290(82)90031-8
  50. WeidenhieIm, L, Svensson, D. K, (1994). Adduction moment of the knee compared to radiological and clinical parameter in moderate medial osteoarthrosis of the knee. Annals Chirurgiae et Gynaecologiae, 83(3), 236-242
  51. Whittle, M. W., (1999). Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait and Posture, 10, 264-275 https://doi.org/10.1016/S0966-6362(99)00041-7
  52. Yu, B., Stuart, M J., Kienbacher, T., Growney, E S., An, K-N. (1997). Valgus-varus motion of the knee in normal level walking and stair climbing. Clinical Biomechanics, 12(5), 286-293 https://doi.org/10.1016/S0268-0033(97)00005-3
  53. Zatsiorsky, V. M (1998). Kinematics of human motion, Human Kinetics, 178-224