ID-TIMS single zircon age determination of mangerite in the eastern Gyeonggi massif, Korea

경기육괴 동부 맨거라이트에 대한 저어콘 단일 입자 열이온화질량분석법 연대측정

Jeong, Youn-Joong;Yi, Kee-Wook;Kamo, Sandra L.;Cheong, Chang-Sik
정연중;이기욱;;정창식

  • Published : 20080800

Abstract

Five zircon grains from mangerite in the Odaesan area, eastern Gyeonggi massif were dated using single grain isotope dilution thermal ionization mass spectrometry. The U-Pb age of a low intercept age is 228.69±0.85 Ma, being significantly different from previous report as 257 Ma(Oh et al., 2006a). All the five grains show an upper intercept age of 1878±27 Ma, consistent with the well-known regional Paleoproterozoic event in the Gyeonggi Massif. This study indicates that the application of zircon in analyzed mangerite sample as a SHRIMP working standard leaves more careful investigation.

경기육괴 동부 오대산 지역 맨거라이트를 대상으로 단일입자 저어콘 U-Pb 연대측정을 실시하였다. 저어콘에 대해서 압축공기 마모법과 화학적 마모법으로 나누어 전처리하고 이 중 5개의 입자를 선정하여 분석하였다. 분석된 저어콘 입자 중 하부 교차점 연대인 228.69±0.85 Ma는 기존 보고된 257 Ma(Oh et al., 2006a)와 차이를 보인다. 조화선 그림에 도시된 맨거라이트 시료들은 1878±27 Ma의 상부 교차점 연대를 지시하여 경기육괴에서 기존에 보고되어온 원생대 초기의 연대를 확인한다. 이번 분석결과로 볼 때 맨거라이트 저어콘은 SHRIMP 측정을 위한 표준물질로는 더 검토를 요한다.

Keywords

References

  1. 고희재, 이병주, 이승렬, 2004, 한국지질도(1:50,000), 고양 도폭 및 설명서, 한국지질자원연구원, 71 p.
  2. 권용완, 김형식, 오창환, 1997, 경기육괴 북동부지역에 분포하는 오대산편마암복합체의 다변성작용. 암석학회지, 6, 226-243
  3. 권용완, 오창환, 김형식, 2001, 경기육괴 북동부 오대산 편마암복합체의 U-Pb 저어콘 연대와 그 의미. 한국광물학회. 한국암석학회 2001년도 공동학술발표회 논문집, 138-140 p.
  4. 김정민, 정창식, 이승렬, 조문섭, 이기욱, 이호선, 정연중, Whitehouse, M., 2006, 춘천 각섬암에서 산출되는 스핀의 U-Pb연대 - 남한에서 관찰되는 삼첩기 중기 변성 작용에 대한 고찰, 대한지질학회 정기총회 및 학술발표회(초록), 한국지질자원연구원, 10월 26-27일, 3 p.
  5. 조등룡, 김용준, 2003, 경기육괴 포천지역의 흑운모 편마암과 우백질 화강암맥에 대한 Shrimp U-Pb 저어콘 연대측정: 광역변성작용 연령 및 퇴적시기의 제한, 대한지질학회 제58차 정기총회 및 학술발표회(초록), 안동대학교, 10월 24-25일, 76 p.
  6. Black, L.P., Kamo, S.L., Williams, I.S., Mundil, R., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003, The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chemical Geology, 200, 171-188 https://doi.org/10.1016/S0009-2541(03)00166-9
  7. Cho, M., Kim Y., and Ahn J., 2007, Metamorphic evolution of the Imjingang blet, Korea: Implications for Permo- Triassic collisional orogeny, International Geology Review, 49, 30-51 https://doi.org/10.2747/0020-6814.49.1.30
  8. Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C. and Essling, A.M., 1971, Precision measurement of half-lives and specific activitiues of 235U and 238U. Physical Review, 4, 1889-1906, doi: 10.1103/PhysRev C.4.1889
  9. Kim, S. W., Oh, C. W., Williams, I. S., Rubatto, D., Ryu, I.-C., V. J., Kim, C.-B., Guo, J. and Zhai, M., 2006, Phanerozoic eclogite and intermediate-pressure granulite facies in the Gyeonggi massif, South Korea: implications for the extension of the Dabie-Sulu continental collision zone. 92, 357-377 https://doi.org/10.1016/j.lithos.2006.03.050
  10. Krogh, T.E., 1973, A low contamination method for hydorthermal decomposition of zircon and extractin of U and Pb for isotopic age determiantion. Geochimica et Cosmochimica Acta, 37, 485-494 https://doi.org/10.1016/0016-7037(73)90213-5
  11. Krogh, T.E., 1982, Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, 46, 637-649 https://doi.org/10.1016/0016-7037(82)90165-X
  12. Krogh, T.E. and Davis, G.L., 1975, The production and preparation of 205Pb for use as a tracer for Isotope Dilution Analyses. Year Book - Carnegie Institution of Washington, 72, 560-567
  13. Larsen, E.S., Keevil, N.B. and Harrison, H.C., 1952, Method for determining the age of igneous rocks using the accessory minerals. Geological Society of America Bulletin, 63, 1045-1052 https://doi.org/10.1130/0016-7606(1952)63[1045:MFDTAO]2.0.CO;2
  14. Lee, J.K.W., Williams, I.S. and Ellis, D.J., 1997, Pb, U and Th diffusion in natural zircon. Nature, 390, 159-162 https://doi.org/10.1038/36554
  15. Lee, S.R., Cho, M., Yi, K. and Stern, R.A., 2000, Early Proterozoic in Central Korea: Tectonic Correlation with Chinses Journal of Geology, 108, 729-738 https://doi.org/10.1086/317951
  16. Mattinson, J.M., 1972, Preparation of hydrofluoric, hydrochloric, and nitirc acids at ultra-low lead levels. Analytical Chemistry, 44, 1715-1716 https://doi.org/10.1021/ac60317a032
  17. Mattinson, J.M., 2000, U-Pb zircon analysis by "chemcial abrasion": combined high-temperature annealing and partial dissolution analysis. Suppl. Eos, Trans.- American Geophys Union 8(19), S27 (GS32A-02)
  18. Mattinson, J.M., 2005, Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined annealing and mulit-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47-66 https://doi.org/10.1016/j.chemgeo.2005.03.011
  19. Naeser, C.W., Zimmerman, R.A., and Cebula, G.T., 1981, Fission-track dating of apatite and zircon: an interlaboratoty comparision. Nuclear Tracks and Radiation Measurements, 5, 65-72 https://doi.org/10.1016/0191-278X(81)90027-5
  20. Oh, C.W., Krishnan, S., Kim, S.W. and Kwon, Y.W., 2006a, Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong-Odesan collision belt in South Korea. Gondwana Research, 9, 95-105 https://doi.org/10.1016/j.gr.2005.06.005
  21. Oh, C.W., Kim, S.W., and Williams, I.S. 2006b, Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575 https://doi.org/10.1016/j.lithos.2006.03.051
  22. Speer, J.A., 1982, Zircon. Reviews in Mineralogy, 5 (2nd ed): 67-112
  23. Tilton, G.R., Patterson, C.C., Brown, H., Inghram, M., Hayden, R., Hess, D. and Larsen, Jr. E., 1955, Isotopic composition and distribution of lead, uranium and thorium in a precambrian grainte. Geological Society of America Bulletin, 66, 1131-1148 https://doi.org/10.1130/0016-7606(1955)66[1131:ICADOL]2.0.CO;2
  24. Tilton, G.R., Davis, G.L., Wetherill, G.W. and Aldrich, L.T., 1957, Isotopic ages of zircon from graintes and pegmatites, EOS Trans. Am. Geophys Union, 38, 360-371 https://doi.org/10.1029/TR038i003p00360
  25. Webber, G.R., Hurley, P.M. and Fairbairn, H.W., 1956, Relative ages of eastern Massachusetts granites by total lead ratios in zircon. American Journal of Science, 254, 574-583 https://doi.org/10.2475/ajs.254.9.574
  26. Wetherill, G.W., 1956, Discordant Uranium-Lead Ages, I. Trans Am. Geophys Union, 37, 320-326 https://doi.org/10.1029/TR037i003p00320
  27. Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y., Nasdala L. and twenty-one others, 2004, Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9-39 https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
  28. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In:Mckibben, M.A. Shanks III, W.C., Ridley, W.I. (Eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. 1-35
  29. Williams, I.S., 2001, Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Science, 48, 557-580 https://doi.org/10.1046/j.1440-0952.2001.00883.x