Effect of Target Bias Voltage on Gold Films Using Plasma Based Ion Implantation

Chun, Sung-Yong

  • Published : 20080000

Abstract

The nucleation and the growing behavior of gold films on carbon under a high voltage pulsed bias using a plasma based ion implantation system was investigated by field-emission scanning electron microscopy (FE-SEM) and Rutherford backscattering spectrometry (RBS). Without an ion implantation process, the films exhibit a typical polycrystalline Vollmer-Weber mode, {\it i.e.}, island, network and channel stages, until the films eventually become continuous. With an ion implantation process, film growth proceeds by a different growth mode consisting of a ultra-thin film with increased nucleation density. A huge morphology change of the deposited films due to the subsequent deposition, resputtering and mixing is observed with changing target bias voltage.

Keywords

References

  1. R. Abermann and R. Koch, Thin Solid Films 129, 71 (1985) https://doi.org/10.1016/0040-6090(85)90096-3
  2. J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala and N. C. Tran, J. Appl. Phys. 62, 4591 (1987) https://doi.org/10.1063/1.339055
  3. A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, 2000)
  4. J. R. Roth, Industrial Plasma Engineering (Institute of Physics and Publishing, London, 2001)
  5. K. Takaki, S. Mukaigawa, T. Fujiwara and K. Yukimura, Surf. Coat. Tech. 201, 6490 (2007) https://doi.org/10.1016/j.surfcoat.2006.09.092
  6. S. C. Kwon, H. J. Lee, J. K. Kim, E. Byon, G. Collins and K. Short, Surf. Coat. Tech. 201, 6601 (2007) https://doi.org/10.1016/j.surfcoat.2006.09.085
  7. S. Y. Chun, A. Chayahara and Y. Horino, Mater. Trans. JIM. 41, 44 (2000) https://doi.org/10.2320/matertrans1989.41.44
  8. S. Y. Chun, A. Chayahara and Y. Horino, Appl. Surf. Sci. 169/170, 607 (2001) https://doi.org/10.1016/S0169-4332(00)00798-4
  9. T. Sroda, S. Meassick and C. Chan, Appl. Phys. Lett. 60, 1076 (1992) https://doi.org/10.1063/1.106449
  10. V. M. Hallmark, S. Chiang, J. F. Rabolt, J. D. Swalen and R. J. Wilson, Phys. Rev. Lett. 59, 2879 (1987) https://doi.org/10.1103/PhysRevLett.59.2879
  11. R. Emch, J. Nogami, M. M. Dovek, C. A. Lang and C. F. Quate, J. Appl. Phys. 65, 79 (1989) https://doi.org/10.1063/1.343379
  12. C. E. D. Chidsey, D. N. Loiacono, T. Sleator and S. Nakahara, Surf. Sci. 200, 45 (1988) https://doi.org/10.1016/0039-6028(88)90432-3
  13. A. Putnam, B. L. Blackford, M. H. Jericho and M. O. Watanabe, Surf. Sci. 217, 276 (1989) https://doi.org/10.1016/0039-6028(89)90549-9
  14. M. Ohring, Materials Science of Thin Films (Academic Press, New York, 2002)
  15. M. Sugawara, Plasma Etching (Oxford University Press, New York, 1998)
  16. B. Lewis and J. C. Anderson, Nucleation and Growth of Thin Films (Academic Press, New York, 1978)
  17. S. Mukherjee, M. Ranjan, R. Rane, N. Vaghela, A. Phukan and K. S. Suraj, Surf. Coat. Tech. 201, 6502 (2007) https://doi.org/10.1016/j.surfcoat.2006.09.093
  18. I. Yamada and N. Toyoda, Int. Matter. Surf. Coat. Tech. 201, 8579 (2007) https://doi.org/10.1016/j.surfcoat.2006.02.081
  19. K. G. Kostov, J. J. Barroso and M. Ueda, Surf. Coat. Tech. 201, 8403 (2007) https://doi.org/10.1016/j.surfcoat.2006.03.061
  20. J. W. Park and J. H. Cho, J. Korean Phys. Soc. 48, 815 (2006)
  21. T. T. Pham, J. H. Lee, Y. S. Kim and G. Y. Yeom, J. Korean Phys. Soc. 51, 1934 (2007) https://doi.org/10.3938/jkps.51.1934
  22. P. Zhang, X. Zheng and D. He, J. Korean Phys. Soc. 46, S92 (2005)