Photoluminescence Characteristics of TEX>$Zn_{2-x}SiO_4:Mn^{2+}_x$ Ceramic Phosphors

$Mn^{2+}$의 함량에 따른 $Zn_{2-x}SiO_4:Mn^{2+}_x$ 세라믹 형광체의 형광특성

Kim, Dong-Woo;Lee, Soung-Soo
김동우;이성수

  • Published : 2008.06.01

Abstract

Zn$_{2-x}$SiO$_4$:Mn$^{2+}_x$ ceramic phosphors for display applications were synthesized at a sintering temperature 1200 $^\circ$C by using a solid state reaction method. The crystallinity, surface morphology, and photoluminescence characteristics of the phosphors were investigated as a function of Mn$^{2+}$ ion concentration by using X-ray diffraction, scanning electron microscopy, and luminescence spectrophotometry. According to the results of X-ray diffraction, the (113) and the (410) directions were the preferred orientations, and the ceramics showed polycrystalline structures with (220), (223), and (110) peaks. As the concentration of Mn$^{2+}$ ion increased, not only was the crystallinity of the ceramic improved but also the particle size increased and became uniform. With increasing concentration of Mn$^{2+}$ ions to $x$=0.03, the photoluminescent intensity of the Zn$_{2-x}$SiO$_4$:Mn$^{2+}_x$ ceramic was highest at $x$=0.03 and was enhanced because of not only the improved crystallinity but also the enlarged particle size of ceramics.

Zn$_{2-x}$SiO$_4$:Mn$^{2+}_x$ 세라믹 형광체를 고상 반응법을 이용하여 제작하였으며, Mn$^{2+}$의 함량에 따른 결정구조와 결정성, 형광특성을 분석하였다. X-선 회절 실험 결과를 통하여 Zn$_{2-x}$SiO$_4$:Mn$^{2+}_x$ 세라믹이 (113) 및 (410) 방향의 주 결정면을 가지며, (220), (223), 그리고 (110) 피크를 가지는 다 결정상으로 성장하였음을 확인할 수 있었다. Mn$^{2+}$의 함량이 0.005 mol에서 0.03 mol로 증가함에 따라 입자들이 균일해지며 크기도 증가함을 알 수 있었으며, Zn$_{2-x}$SiO$_4$:Mn$^{2+}_x$ 세라믹의 형광 스펙트럼은 Mn$^{2+}$의 함량이 0.03 mol에서 가장 좋은 특성을 가짐을 알 수 있었다. Mn$^{2+}$의 함량이 0.03 mol까지 증가함에 따라 형광강도의 증가하는데, 이러한 현상은 Mn$^{2+}$의 함량이 증가함에 따라 결정성의 향상 뿐 만 아니라 입자들의 크기 및 표면 형상의 변화에 의한 것임을 알 수 있었다.

Keywords

References

  1. S. Okamoto and H. Yamamoto, J. Appl. Phys. 91, 5492 (2002) https://doi.org/10.1063/1.1458050
  2. C. B. Samantaray, M. L. Nanda Goswami, D. Bhattacharya, S. K. Ray and H. N. Ackarya, Materials Lett. 58, 2299 (2004) https://doi.org/10.1016/S0167-577X(04)00124-7
  3. P. T. Diallo, K. Jeanlouis, P. Bontinaud, R. Mahiou and J. C. Cousseins, J. Alloy. Compd. 323, 218 (2001) https://doi.org/10.1016/S0925-8388(01)01115-X
  4. E. Pinel, P. Boutinaid, R. Mahiou and J. Alloy. Compd. 380, 225 (2004) https://doi.org/10.1016/j.jallcom.2004.03.048
  5. J. K. Park, H. Ryu, H. D. Park and S. Y. Choi, J. European Ceram. Doc. 21, 535 (2001) https://doi.org/10.1016/S0955-2219(00)00238-7
  6. C. C. Klick and J. H. Schulman, Luminesence in Solid Soild State Physics, 5th editions, F. Seitz and D. Turnbull, (Academic Press., New York, 1957)
  7. Y. C. Kang, S. B. Park, I.W. Lenggor and K. Okuyama, J, Phys. Chem. Solids 60, 379 (1999) https://doi.org/10.1016/S0022-3697(98)00266-2
  8. H. K. Yang, K. S. Shim, S. B. Kim and J. H. Jeong, SAEMULLI (New Phys.) 50, 165 (2005)
  9. K. S. Sohn, B. Cho and H. D. Park, Mater. Left 41, 303 (1999) https://doi.org/10.1016/S0167-577X(99)00147-0
  10. C. R. Ronda and T. Amrein, J. of Lumin. 69, 245 (1996) https://doi.org/10.1016/S0022-2313(96)00103-2
  11. Tadatsugu Minami, Youhei Kobayashi, Toshihiro Miyata and Masashi Yamazaki, Thin Solid Film 443, 91 (2003) https://doi.org/10.1016/S0040-6090(03)00976-3
  12. S. S. Yi, J. S. Bae, H. J. Seo, J. H. Jeong and P. H. Holloway, J. Vac. Sci. Technol. A 22, 1746 (2004) https://doi.org/10.1116/1.1764813
  13. J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim and K. S. Suh, Appl Phys Lett. 77, 14 (2000)
  14. Y. C. Kang, S. B. Park, I. W. Lenggoro and K. Okuyama, J. Phys. Chem. Solids 60, 379 (1999) https://doi.org/10.1016/S0022-3697(98)00266-2
  15. D. L. Dexter, J. Chem. Phys. 21, 836 (1953) https://doi.org/10.1063/1.1699044
  16. D. L. Dexter and J. H. Schulman, J. Chem. Phys. 22, 1063 (1954) https://doi.org/10.1063/1.1740265