Synthesis of gallium-catalyzed silicon nanowires by hydrogen radical-assisted deposition method

Jeon, Min-Sung;Tomitsuka, Yoshihiro;Kamisako, Koichi

  • Published : 20081100

Abstract

Gallium-catalyzed silicon nanowires (SiNWs) were synthesized by the hydrogen radical-assisted deposition method. The voluminous quantities of SiNWs with various crystal growth directions were synthesized and their characteristics were estimated by using XRD, FESEM, TEM and EDX analyses. Most of the Ga-capped SiNWs were directly grown with some smoothly curved SiNWs. Large quantities of small- SiNWs with diameters of 20–80 nm were tree-likely grown on the large-SiNWs surface. The diameters of large-SiNWs were approximately 200 nm–2 mm. Furthermore, a simple model of growth mechanism for sub-grown silicon nanowires by the hydrogen radical-assisted deposition method was proposed.

Keywords

References

  1. J.W. Kim, J.S. Im, T. Cho, Y.V. Basova, D.D. Edie, Y.S. Lee, J. Ind. Eng. Chem. 13 (2007) 757
  2. E.W. Wong, P.E. Sheeham, C.M. Lieber, Science 277 (1997) 1971 https://doi.org/10.1126/science.277.5334.1971
  3. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283 (1999) 512 https://doi.org/10.1126/science.283.5401.512
  4. J.S.Kim,W.I. Park, C.H. Lee,G.C.Yi, J.Korean Phys. Soc. 49 (2006) 1635
  5. H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, H. Dai, Appl. Phys. Lett. 75 (1999) 627 https://doi.org/10.1063/1.124462
  6. Y. Cui, C.M. Lieber, Science 291 (2001) 851 https://doi.org/10.1126/science.291.5505.851
  7. X.F. Duan, J.F. Wang, C.M. Lieber, Appl. Phys. Lett. 76 (2000) 1116 https://doi.org/10.1063/1.125956
  8. S.H.Kang, J.Y. Kim, H.S. Kim,Y.E. Sung, J. Ind. Eng. Chem. 14 (2008) 52 https://doi.org/10.1016/j.jiec.2007.06.004
  9. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (2003) 353 https://doi.org/10.1002/adma.200390087
  10. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421 (2003) 241 https://doi.org/10.1038/nature01353
  11. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32 (1999) 435 https://doi.org/10.1021/ar9700365
  12. M.T. Kelly, J.K.M. Chun, A.B. Bocasly, Nature 382 (1996) 214
  13. M.G. Nikolaides, S. Rauschenbach, A.R. Bausch, J. Appl. Phys. 95 (2004) 3811 https://doi.org/10.1063/1.1650880
  14. Z.Q. Liu, W.Y. Zhou, L.F. Sun, D.S. Tang, X.P. Zou, Y.B. Li, C.Y. Wang, G. Wang, S.S. Xie, Chem. Phys. Lett. 341 (2001) 523 https://doi.org/10.1016/S0009-2614(01)00513-9
  15. D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J.Wang, Y.H. Zou,W. Qian, G.C. Xiong, H.T. Zhou, S.Q. Feng, Appl. Phys. Lett. 72 (1998) 3458 https://doi.org/10.1063/1.121665
  16. J. Lee, J. Oh, Y. Tak, J. Ind. Eng. Chem. 10 (2004) 1058
  17. A.M. Morales, C.M. Lieber, Science 279 (1998) 208 https://doi.org/10.1126/science.279.5348.208
  18. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 (1964) 89 https://doi.org/10.1063/1.1753975
  19. E.I. Givargizov, J. Cryst. Growth 31 (1975) 20 https://doi.org/10.1016/0022-0248(75)90105-0
  20. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 15 (1997) 554 https://doi.org/10.1116/1.589291
  21. T.I. Kamins, R.S.Williams, Y. Chen, Y.L. Chang, Y.A. Chang, Appl. Phys. Lett. 76 (2000) 562 https://doi.org/10.1063/1.125852
  22. R.J. Barsotti, J.E. Fischer, C.H. Lee, J. Mahmood, C.K.W. Adu, P.C. Eklund, Appl. Phys. Lett. 81 (2002) 2866 https://doi.org/10.1063/1.1512827
  23. M.K. Sunkara, S. Sharma, R. Miranda, G. Linda, E.C. Dickey, Appl. Phys. Lett. 79 (2001) 1546
  24. M.S. Jeon, K. Kamisako, Appl. Surf. Sci. 254 (2008) 7703 https://doi.org/10.1016/j.apsusc.2008.01.157
  25. M.S. Jeon, Y. Tomitsuka, K. Maishigi, H. Uchiyama, M. Aoyagi, K. Kamisako, IEICE Electron. Express 5 (2008) 586 https://doi.org/10.1587/elex.5.586
  26. M.S. Jeon, H. Uchiyama, K. Kamisako, Mater. Lett. 63 (2009) 246 https://doi.org/10.1016/j.matlet.2008.10.005
  27. H. Okamoto, Desk Handbook Phase Diagrams for Binary Alloys, ASM International, Materials Park, Ohio, 2000
  28. M.S. Jeon, K. Kamisako, Mater. Lett. 62 (2008) 3903 https://doi.org/10.1016/j.matlet.2008.05.035
  29. L. Dai, L.P. You, X.F. Duan, W.C. Lian, G.G. Qin, Phys. Lett. A 335 (2005) 304 https://doi.org/10.1016/j.physleta.2004.12.029
  30. R.S. Wagner, Whisker Technology, Wiley, New York, 1970
  31. Y.C. Wu, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4 (2004) 433 https://doi.org/10.1021/nl035162i
  32. W. Lu, C.M. Lieber, J. Phys. D: Appl. Phys. 39 (2006) 387 https://doi.org/10.1088/0022-3727/39/21/R01