Change in Ocular Dimensions with Age in Patients with Emmetropia

정시안에서 연령에 따른 안수치들의 변화

Kim, Chan-Su;Kim, Su-Young;Park, Young-Hoon;Lee, Young-Chun
김찬수;김수영;박영훈;이영춘

  • Published : 2008.03.01

Abstract

Purpose: We evaluated changes in ocular dimensions according to age in patients with emmetropia. Methods: We examined the refraction, corneal curvature, and biometry in 150 subjects from 5 to 75 years old with spherical equivalent refractions under ±0.75 diopter (D). Ocular dimensions were measured by A-scan ultrasonography and keratometry. We analysed the distribution and change of ocular dimensions according to age (1: 0~19-year-old group, 2: 20~39-year-old group, 3: 40~59-year-old group, 4: 60~79- year-old group). Results: The values for corneal radius (CR), vitreous chamber depth (VCD) and axial length (AL) were highest in group 2. Lens thickness (LT) increased with increasing age, whereas anterior chamber depth (ACD) decreased with increasing age (P<0.05). CR, VCD, AL (P<0.05) and ACD (P=0.10) seem to have higher values in males, while LT seems to have a higher value in females (P=0.06). Conclusions: Axial length increases with increasing age in subjects aged 0 to 39 years in emmetropia. In subjects aged 40 years or older, axial length becomes smaller with age. In each age group compensational changes to achieve emmetropia according to AL change are shown in ocular dimensions like CR, VCD, ACD, LT.

목적 : 정시안에 있어서 연령 군별 안수치들의 분포 변화와 그 유의성을 알아보고자 하였다. 대상과 방법 : 안질환 병력이 없는 만 5세부터 75세 사이의 정시안 150명(150안)을 대상으로 20세 간격으로 1군(0~19세) 2군(20~39세), 3군(40~59세), 4군(60~79세)의 4개 군으로 분류하고, 수동각막곡률계와 A-scan 초음파를 측정하여 안수치들의 분포 변화를 분석하였다. 결과 : 각막곡률반경, 유리체 깊이, 안축장은 2군(평균나이 25세)을 최대로 이전과 이후로는 감소 양상을 보였고, 1군부터 수정체 두께는 점차 증가하는 양상을, 전방의 깊이는 감소 양상을 보였으며, 이들은 모두 통계적으로 유의성이 있게 나타났다(P<0.05). 각 군별 평균값의 남녀 비교에서 각막곡률반경, 유리체 깊이, 안축장은 통계학적으로 의미 있게 남자가 여자보다 큰 값을 나타냈고(P<0.05), 전방의 깊이는 남자가 여자보다 큰 경향을 보였으며(P=0.10), 수정체의 두께는 여자가 남자 보다 두꺼운 경향을 보였다(P=0.06). 결론 : 정시안은 2군을 최대로 이전과 이후 연령 군으로 갈수록 안축장이 작아지며, 연령 군별로 정시를 유지하기 위한 안축장의 변화에 따른 각막곡률반경, 유리체 깊이, 전방의 깊이, 수정체의 두께 등 안수치들의 유의한 보상적 변화들이 나타났다.

Keywords

References

  1. William JB. Borish's clinical refraction, 1st ed. Philadelphia: WB Saunders, 1998;2-17
  2. Troilo D. Neonatal eye growth and emmetropization. Eye 1992;6:154-60 https://doi.org/10.1038/eye.1992.31
  3. David AA, George S. Optics of the human eye, 1st ed. Oxford: Butterworth-Heinemann, 2000;39-47
  4. Kim CS, Kim MY, Kim HS, Lee YC. Change of corneal astigmatism with aging in Korean with normal visual acuity. J Korean Ophthalmol Soc 2002;43:1956-62
  5. Sung PJ. Optometry, 2nd ed. Seoul: Daehakseolim, 2002;104-6
  6. Vaughan D, Asbury T, Tabbara KT. General Ophthalmology, 12th ed. USA: Prentice-Hall International Inc, 1989;364-6
  7. Naess RO. Optics for Technology Students, 1st ed. New Jersey: Prentice-Hall Inc, 2001;364-6
  8. Duke-Elder S. System of Ophthalmology, 1st ed. Vol. 2. St. Louis: CV Mosby, 1961;80-1
  9. Duane T. Clinical Ophthalmology, 3rd ed. Vol 1. Philadelphia: Harper & Row Publishers, 1978;1-3
  10. Kim SD, Lee DS, Kim JD. Study of the corneal refractive power and axial length of the adult korean eyeball. J Korean Ophthalmol Soc 1990;31:1365-9
  11. Lim KJ, Choi WS, Youn DH. Aging and Ocular Dimension. J Korean Ophthalmol Soc 1992;33:653-61
  12. Clemmesen V, Olurin O. Lens thickness in western nigeria a comparative ultrasonic study in negroes and danes. Acta Ophthalmol 1985;63:274-6 https://doi.org/10.1111/j.1755-3768.1985.tb06804.x
  13. Larsen JS. The sagittal growth of the eye. III. Ultrasonic measurement of the posterior segment (axial length of the vitreous) from birth to puberty. Acta Opthalmol 1971;49:873-86 https://doi.org/10.1111/j.1755-3768.1971.tb05939.x
  14. Sorsby A. Biology of the eye as an optical system. In : Duane TD, ed. Clinical Ophthalmology, 7th ed. Philadelphia: Harper & Row Publishers, 1983; v. 1. chap. 34
  15. Grosvenor T. Reduction in axial length with age: An emmetropizing mechanism for the adult eye? Am J Optom Physiol Opt 1987;64:657-63 https://doi.org/10.1097/00006324-198709000-00003
  16. Koretz JF, Cook A, Kaufman PL. Accommodation and presbyopia in the human eye: change in anterior segment and crystalline lens with focus. Invest Ophthalmol Vis Sci 1997;38:569-78
  17. Kim JB, Kim JM. Relationships between corneal curvature and refractive errors in korea. J Korean Ophthalmol Soc 1977;18:39-44
  18. Kiely PM, Smith G, Carney LG. Meridional variations of corneal shape. Am J Optom Physiol Optic 1984;61:619-25 https://doi.org/10.1097/00006324-198410000-00001
  19. Hayahi K, Hayahi H, Hayahi F. Topographic analysis of the changes in corneal shape due to aging. Cornea 1995;14:527-32
  20. Choi HH. A consideration for corneal curvature, Its thickness and anterior chamber depth. J Korean Ophthalmol Soc 1978;19:417-22
  21. Wong TY, Foster PJ, Ng TP, et al. Variations in Ocular biometry in an adult chinese population in singapore: The tanjong pagar survey. Invest Ophthalmol Vis Sci 2001;42:73-80
  22. Wickremasinghe S, Foster PJ, Uranchimeg D, et al. Ocular biometry and refraction in mongolian adults. Invest Ophthalmol Vis Sci 2004;45:776-83 https://doi.org/10.1167/iovs.03-0456
  23. Rengstorff RH, Arner RS. Refractive changes in the cornea: Mathematical considerations. Am J Optom Arch Am Acad Optom 1971;48:913-8 https://doi.org/10.1097/00006324-197111000-00003
  24. Erickson P. Mathematical model for predicting dioptric effects of optical parameter changes in the eye. Am J Optom Physiol Opt 1977;54:226-33 https://doi.org/10.1097/00006324-197704000-00005
  25. Smith G, Atchison DA. Pierscionek BK. Modeling the power of the aging human eye. J Opt Soc Am A 1992;9:2111-7 https://doi.org/10.1364/JOSAA.9.002111
  26. Kim YK, Kim JS, Kim JD. Study on lens thickness and anterior chamber depth during accommodation and weak cycloplegic eyes. J Korean Ophthalmol Soc 1991;32:160-6
  27. Sorsby A, Leary GA, Richards MJ. The optical components in anisometropia. Vision Res 1962;2:43-51 https://doi.org/10.1016/0042-6989(62)90062-7
  28. Brown N. The human lens in relation to cataract, Ciba Foundation Symposium 15, 1st ed. Vol. 1. Amsterdam: Elsevier 1973;65-78
  29. Friedman NE, Mutti, DO, Zadnik K. Corneal changes in schoolchildren. Optom Vis Sci 1996;73:552-7 https://doi.org/10.1097/00006324-199608000-00006
  30. Mcbrien NA, Adams DW. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group: refractive and biometric findings. Invest Ophthalmol Vis Sci 1997;38:321-33
  31. Lin LL, Shih YF, Lee YC, et al. Changes in ocular refraction and its components among medical students: A 5 year longitudinal study. Optom Vis Sci 1996;73:495-8 https://doi.org/10.1097/00006324-199607000-00007
  32. Grosvenor T, Scott R. Three-year changes in refraction and its components in youth-onset myopia. Optom Vis Sci 1993;70: 677-83 https://doi.org/10.1097/00006324-199308000-00017
  33. Attebo K, Rebecca Q, Lvers, Mitchell P. Refractive errors in an older population: The mountains eye study. Ophthalmology 1999;106:1066-72 https://doi.org/10.1016/S0161-6420(99)90251-8