Modeling Friction Stir Welding Process of Aluminum Alloys

Cho, J.-H.;Kang, S.H.;Han, H.N.;Oh, K.H.

  • Published : 20080400

Abstract

The friction stir welding (FSW) process of aluminum alloys has been modeled using a two-dimensional Eulerian formulation. Velocity field and temperature distribution are strongly coupled and solved together using a standard finite element scheme. A scalar state variable for hardening is also integrated using a streamline integration method along streamlines. A viscoplastic constitutive equation to consider plastic flow and strength variations was implemented for the process modeling. Precipitates inside AA6061 alloys are sensitive to elevated temperatures and affect strength evolution with temperature. The overall effects of the precipitate variations with temperature on strength were reflected using temperature-dependent material parameters. The material parameters of constitutive equations were obtained from isothermal compression tests of various temperatures and strain rates. The effects of FSW process conditions on heating and hardening were investigated mainly near the tool pin. The microhardness distribution of the weld zone was compared with the prediction of strength. In addition, crystallographic texture evolutions were also predicted and compared with the experimental results.

Keywords

References

  1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, Friction Stir Butt Welding, The Welding Institute(TWI), PCT World Patent Application WO 93/10935, Filed: Nov. 27 (1992)
  2. Yuh J. Chao, X. Qi, and W. Tang, J. Manuf. Sci. Eng. 125, 138 (2003) https://doi.org/10.1115/1.1537741
  3. P. A. Colegrove and H. R. Shercliff, J. Mater. Process. Tech. 169, 320 (2005) https://doi.org/10.1016/j.jmatprotec.2005.03.015
  4. P. Vilaca, L. Quintino, and J. F. Santos, J. Mater. Process. Tech. 169, 452 (2005) https://doi.org/10.1016/j.jmatprotec.2004.12.016
  5. H. Schmidt, J. Hattel, and J. Wert, Model. Simul. Mater. Sci. Eng. 12, 143 (2004) https://doi.org/10.1088/0965-0393/12/1/013
  6. H. Schmidt and J. Hattel, Model. Simul. Mater. Sci. Eng. 13, 77 (2005) https://doi.org/10.1088/0965-0393/13/1/006
  7. J. -H. Cho, D. E. Boyce, and P. R. Dawson, Mater. Sci. Eng. A 398, 146 (2005) https://doi.org/10.1007/BF02875606
  8. J. -H. Cho and P. R. Dawson, Metall. Trans. A 37, 1147 (2006) https://doi.org/10.1007/s11661-006-1093-8
  9. J. -H. Cho, D. E. Boyce, and P. R. Dawson, Model. Simul. Mater. Sci. Eng. 15, 469 (2007) https://doi.org/10.1088/0965-0393/15/5/007
  10. T. J. Lienert, W. L. Stellwag, B. B. Grimmett, and R. W. Warke, Weld. J. 82, 1s (2003)
  11. A. P. Reynolds, W. Tang, M. Posada, and J. DeLoach, Sci. Tech. Weld. Join. 8, 455 (2003) https://doi.org/10.1179/136217103225009125
  12. Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, Metall. Trans. A 30, 2429 (1999) https://doi.org/10.1007/s11661-999-0251-1
  13. M. N. James, D. G. Hattingh, and G. R. Bradley, Int. J. Fatigue 25, 1389 (2003) https://doi.org/10.1016/S0142-1123(03)00061-6
  14. S. G. Lim, S. S. Kim, C. G. Lee, and S. J. Kim, J. Kor. Inst. Met. & Mater. 42, 29 (2004)
  15. S. G. Lim, S. S. Kim, C. G. Lee, and S. J. Kim, Met. Mater. -Int. 11, 113 (2005) https://doi.org/10.1007/BF03027454
  16. M. Dixit, J. W. Newkirk, and R. S. Mishra, Scripta mater. 56, 541 (2007) https://doi.org/10.1016/j.scriptamat.2006.11.006
  17. J. Bonet and R. D. Wood, Cambridge University Press (1997)
  18. E. W. Hart, J. Eng. Mater. Tech. 98, 193 (1976) https://doi.org/10.1115/1.3443368
  19. G. M. Eggert and P. R. Dawson, Int. J. Mech. Sci. 29, 95 (1987) https://doi.org/10.1016/0020-7403(87)90045-2
  20. G. M. Eggert and P. R. Dawson, Comput. Method. Appl. Mech. Eng. 70, 165 (1988) https://doi.org/10.1016/0045-7825(88)90156-9
  21. National Center for Excellence in Metalworking Technology, Atlas of Formability, Aluminum 6061, Wrought (1994)
  22. P. Ulysse, Int. J. Mach. Tool. Manu. 42, 1549 (2002) https://doi.org/10.1016/S0890-6955(02)00114-1
  23. E. S. Fisher, J. Nucl. Mater. 18, 39 (1966) https://doi.org/10.1016/0022-3115(66)90094-8
  24. C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Acta mater. 53, 2447 (2005) https://doi.org/10.1016/j.actamat.2005.02.007