The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs

농업용 저수지 수질과 경험적 인자들과의 관계

  • Kim, Ho-Sub (National Institute of Environmental Research) ;
  • Choi, Eun-Mi (Department of Environmental Science, Kangwon National University) ;
  • Park, Ju-hyun (National Institute of Environmental Research) ;
  • Hwang, Ha-Sun (National Institute of Environmental Research) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University) ;
  • Kong, Dong-Soo (National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • Received : 2008.03.26
  • Accepted : 2008.04.30
  • Published : 2008.05.30

Abstract

This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.

Keywords

References

  1. 국립환경연구원(2004). 수계오염총량관리기술지침. 11-1480083- 000148-01
  2. 김좌관, 홍욱희(1992). 국내 인공댐호의 물리적 환경인자에 의한 호수특성 고찰에 관한 연구. 한국환경과학회지, 1, pp. 49-57
  3. 김호섭(2004). 저수지 조류 성장 동태학과 생태공학적 조류 제어 연구. 공학박사논문, 건국대학교
  4. 김호섭, 최은미, 김동우, 공동수, 김경만, 김범철(2007). 농업 용저수지 유역환경특성에 따른 수질경향 분석. 한국육수학회지, 40(2), pp. 214-222
  5. 김호섭, 황순진(2004). 얕은 부영양저수지의 육수학적 특성- 계절에 따른 수질변화. 한국육수학회지, 37(2), pp. 180- 192
  6. 농림부 농업기반공사(2003). 농업용수 수질측정망 조사 보 고서
  7. 박주현(2003). 한국 주요호수의 비교육수학적 연구. 이학박 사논문, 강원대학교
  8. 윤춘경, 이새봄, 정광욱, 한정윤(2007). 농업용저수지 유역의 토지이용과 수질항목 간의 상관관계 분석. 한국육수학회지, 41(1), pp. 31-39
  9. 이새봄, 윤춘경, 정광욱, 장재호, 전지홍(2007). 토지이용의 공간적 분포와 농업용저수지 수질간의 상관분석. 한국육수학회지, 40(3), pp. 481-488
  10. 전지홍, 윤춘경, 함종화, 김호일, 황순진(2002). 농업용저수 지의 물리적 인자가 수질에 미치는 영향. 한국육수학회지, 35(1), pp. 28-35
  11. 환경부(2006). 물환경관리 기본계획 -4대강 대권역 수질보전 기본계획('06-'15)
  12. Anon (1982). Eutrophication of waters. Monitoring, assessment and control. Organization for economic cooperation and development. Paris
  13. Carlson, R. E. (1977). A trophic state index for lakes. Limnol. Oceanogr., 22, pp. 361-369 https://doi.org/10.4319/lo.1977.22.2.0361
  14. Carmack, E. C., Gray, C. B. J., Pharo, C. H. and Daley, R. J. (1979). Importance of lake-river interactions on seasonal patterns in the general circulation of Kamloops Lake, British Columbia. Limnol. Oceanogr., 24, pp. 634-644 https://doi.org/10.4319/lo.1979.24.4.0634
  15. Cooke, G. D., Welch, E. B., Peterson, S. A. and Newroth, P. R. (1993). Restoration and management of lakes and reservoirs. Lewis Publishers and CRC Press, Boca Raton, FL
  16. Cooke, G. W. and Williams, R. J. B. (1973). Significance of man-made sources of phosphorus: fertilisers and farming. Wat. Res., 7, pp. 19-33 https://doi.org/10.1016/0043-1354(73)90150-4
  17. Happer, D. (1992). Eutrophication of fresh water: principles, problems and restoration. Chapman and Hall
  18. Havens, K. E. (2000). Using Trophic state index (TSI) values to draw inferences regrading phytoplankton limiting factors and seston composition from routine water quality monitoring data. 한국육수학회지, 33(3), pp. 187-196
  19. Kalff, J. (2002). Limnology : Inland water Ecosystem. Prentice hall, New Jersey
  20. Kratzer, C. R. and Brezonik, P. L. (1981). A carlson-type trophic state in dex for nitrogen in Florida lakes. Wat. Res. Bull., 17, pp. 713-717 https://doi.org/10.1111/j.1752-1688.1981.tb01282.x
  21. Peterjohn, W. T. and Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology, 65, pp. 1466-1475 https://doi.org/10.2307/1939127
  22. Sommer, U., Gliwicz, Z. M., Lampert, W. and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106, pp. 433-471
  23. Tabuchi, T., Hisao, K., Hiroyuki, S., Keiko, T. and Takashi, M. (1991). Nitrogen outflow during irrigation period from a small agricultural area-Research on outflow load from agricultural area without a point source(II). Trans. JSIDRE, 154, pp. 55-64
  24. US EPA (1974) Lake restoration. US Environmental Protection Agency, Minneapolis, Minnesota
  25. Van der Molen, D. T. and Boers, P. C. M. (1994). Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiol., 275/276, pp. 379-389 https://doi.org/10.1007/BF00026728
  26. William, F. J., Kennedy, R. H. and Montgomery, R. H. (1987). Seasonal and longitudinal variations in apparent deposition rates within an Arkansas reservoir. Limnol. Oceanogr., 32, pp. 1169-1176 https://doi.org/10.4319/lo.1987.32.5.1169