DOI QR코드

DOI QR Code

Fabrication of ZnO Hexagonal Micropyramids by Using an rf-Magnetron Sputtering Method

  • Komura, Shingo (Department of Applied Physics, Osaka City University) ;
  • Kim, DaeGwi (Department of Applied Physics, Osaka City University) ;
  • Wakaiki, Shuji (Department of Applied Physics, Osaka City University) ;
  • Nakayama, Masaaki (Department of Applied Physics, Osaka City University)
  • Published : 2008.07.01

Abstract

We report on fabrication of self-assembled ZnO hexagonal micropyramids grown on a (0001) $Al_2O_3$ substrate by using an rf-magnetron sputtering method from the aspects of thier structural and optical properties. We found that the average size of the hexagonal micropyramids increases with increasing growth temperature. The reflection and the photoluminescence spectra at 10 K demonstrate high-quality optical properties for the total growth layer. Especially, for the growth temperatures of 650 ℃ and 700 ℃, fine structures are observable in the excitonic transitions in the reflection spectra. Furthermore, under high-density excitation conditions, photoluminescence bands originating from bi-exciton formation and from an inelastic scattering process of excitons, the so-called P emission, were observed.

Keywords

Acknowledgement

This work was supported by a Grant-in-Aid for Creative Scientific Research (No. 17GS1204) from the Japan Society for the Promotion of Science.

References

  1. For a review, see U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  2. D. Kim, S. Wakaiki, S. Komura, M. Nakayama, Y. Mori and K. Suzuki, Appl Phys. Lett. 90, 101918 (2007) https://doi.org/10.1063/1.2713123
  3. Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001) https://doi.org/10.1126/science.1058120
  4. S. X. Mao, H. Zhao and Z. L. Wang, Appl. Phys. Lett. 83, 993 (2003). https://doi.org/10.1063/1.1597754
  5. C. Kim, Y.-J. Kim, E.-S. Jang, G.-C. Yi and H.-H. Kim, Appl. Phys. Lett. 88, 093104 (2006) https://doi.org/10.1063/1.2174122
  6. O. Madelung and Landolt-Bornstein, Physics of II-VI and I-VII Compounds, Semimagnetic Semiconductors, New Series, Group 3, Vol. 17, Part B (Springer, Berlin, 1982), p. 35
  7. D. C. Reynolds, C. W. Litton and T. C. Collins, Phys. Rev. 140, A1726 (1965) https://doi.org/10.1103/PhysRev.140.A1726
  8. Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998) https://doi.org/10.1063/1.368595
  9. K. Tamura, A. Ohtomo, K. Saikusa, Y. Osaka, T. Makino, Y. Segawa, M. Sumiya, S. Fuke, H. Koinuma and M. Kawasaki, J. Cryst. Growth 214/215, 59 (2000) https://doi.org/10.1016/S0022-0248(00)00059-2
  10. J. H. Hvam, Phys. Status Solidi B 63, 511 (1974) https://doi.org/10.1002/pssb.2220630210
  11. C. Klingshirn, Phys. Status Solidi B 71, 547 (1975) https://doi.org/10.1002/pssb.2220710216
  12. D. Kim, T. Terashita, I. Tanaka and M. Nakayama, Jpn. J. Appl. Phys. 42, L935 (2003) https://doi.org/10.1143/JJAP.42.L935
  13. T. Shimomura, D. Kim and M. Nakayama, J. Lumin. 112, 191 (2005) https://doi.org/10.1016/j.jlumin.2004.09.054