DOI QR코드

DOI QR Code

Amino acids at N- and C-termini are required for the efficient production and folding of a cytolytic γ-endotoxin from Bacillus thuringiensis

  • Thammachat, Siriya (Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Pathaichindachote, Wanwarang (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Krittanai, Chartchai (Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Promdonkoy, Boonhiang (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
  • Published : 2008.11.30

Abstract

Bacillus thuringiensis Cyt2Aa toxin is a mosquito-larvicidal and cytolytic $\delta$-endotoxin, which is synthesized as a protoxin and forms crystalline inclusions within the cell. These inclusions are solubilized under alkaline conditions and are activated by proteases within the larval gut. In order to assess the functions of the N-and C-terminal regions of the protoxin, several N- and C-terminal truncated forms of Cyt2Aa were constructed. It was determined that amino acid removal at the N-terminal, which disrupts the $\beta$1 structure, might critically influence toxin production and inclusion formation. The deletion of 22 amino acids from the C-terminus reduced the production and solubility of the toxin. However, the removal of more than 22 amino acids from the C-terminus or the addition of a bulky group to this region could result in the inability of the protein to adopt the proper folding. These findings directly demonstrated the critical roles of N- and C-terminal amino acids on the production and folding of the B. thuringiensis cytolytic $\delta$-endotoxin.

Keywords

References

  1. Schnepf, E., Crickmore, N., Van, R. J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806
  2. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van, R. J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813
  3. Juarez-Perez, V., Guerchicoff, A., Rubinstein, C. and Delecluse, A. (2002) Characterization of Cyt2Bc toxin from Bacillus thuringiensis subsp. medellin. Appl. Environ. Microbiol. 68, 1228-1231 https://doi.org/10.1128/AEM.68.3.1228-1231.2002
  4. Promdonkoy, B., Chewawiwat, N., Tanapongpipat, S., Luxananil, P. and Panyim, S. (2003) Cloning and characterization of a cytolytic and mosquito larvicidal delta-endotoxin from Bacillus thuringiensis subsp. darmstadiensis. Curr. Microbiol. 46, 94-98 https://doi.org/10.1007/s00284-002-3823-5
  5. Thomas, W. E. and Ellar, D. J. (1983) Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60, 181-197
  6. Knowles, B. H., White, P. J., Nicholls, C. N. and Ellar, D. J. (1992) A broad-spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis. Proc. Biol. Sci. 248 ,1-7
  7. Guerchicoff, A., Delecluse, A. and Rubinstein, C. P. (2001) The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl. Environ. Microbiol. 67, 1090-1096 https://doi.org/10.1128/AEM.67.3.1090-1096.2001
  8. Li, J., Koni, P. A. and Ellar, D. J. (1996) Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J. Mol. Biol. 257, 129-152 https://doi.org/10.1006/jmbi.1996.0152
  9. Koni, P. A. and Ellar, D. J. (1994) Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology 140 ( Pt 8), 1869-1880 https://doi.org/10.1099/13500872-140-8-1869
  10. Butko, P. (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl. Environ. Microbiol. 69, 2415-2422 https://doi.org/10.1128/AEM.69.5.2415-2422.2003
  11. Manceva, S. D., Pusztai-Carey, M., Russo, P. S. and Butko, P. (2005) A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry 44, 589-597 https://doi.org/10.1021/bi048493y
  12. Promdonkoy, B. and Ellar, D. J. (2003) Investigation of the pore-forming mechanism of a cytolytic delta-endotoxin from Bacillus thuringiensis. Biochem. J. 374, 255-259 https://doi.org/10.1042/BJ20030437
  13. Knowles, B. H., Blatt, M. R., Tester, M., Horsnell, J. M., Carroll, J., Menestrina, G. and Ellar, D. J. (1989) A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 244, 259-262 https://doi.org/10.1016/0014-5793(89)80540-X
  14. Koni, P. A. and Ellar, D. J. (1993) Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J. Mol. Biol. 229, 319-327 https://doi.org/10.1006/jmbi.1993.1037
  15. Moonsom, S., Chaisri, U., Kasinrerk, W. and Angsuthanasombat, C. (2007) Binding characteristics to mosquito-larval midgut proteins of the cloned domain II-III fragment from the Bacillus thuringiensis Cry4Ba toxin. J. Biochem. Mol. Biol. 40, 783-790 https://doi.org/10.5483/BMBRep.2007.40.5.783
  16. Chayaratanasin, P., Moonsom, S., Sakdee, S., Chaisri, U., Katzenmeier, G. and Angsuthanasombat, C. (2007) High level of soluble expression in Escherichia coli and characterisation of the cloned Bacillus thuringiensis Cry4Ba domain III fragment. J. Biochem. Mol. Biol. 40, 58-64 https://doi.org/10.5483/BMBRep.2007.40.1.058
  17. Promdonkoy, B., Promdonkoy, P., Tanapongpipat, S., Luxananil, P., Chewawiwat, N., Audtho, M. and Panyim, S. (2004) Cloning and characterization of a mosquito larvicidal toxin produced during vegetative stage of Bacillus sphaericus 2297. Curr. Microbiol. 49, 84-88
  18. Huang, C. J. and Chen, C. Y. (2005) High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophys. Res. Commun. 327, 8-17 https://doi.org/10.1016/j.bbrc.2004.11.140
  19. Jensen, T. H., Jensen, A. and Kjems, J. (1995) Tools for the production and purification of full-length, N- or C-terminal 32P-labeled protein, applied to HIV-1 Gag and Rev. Gene 162, 235-237 https://doi.org/10.1016/0378-1119(95)00328-4
  20. Matthysse, A. G., Stretton, S., Dandie, C., McClure, N. C. and Goodman, A. E. (1996) Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol. Lett. 145, 87-94 https://doi.org/10.1111/j.1574-6968.1996.tb08561.x
  21. Promdonkoy, B. and Ellar, D. J. (2000) Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. Biochem. J. 350 Pt 1, 275-282 https://doi.org/10.1042/0264-6021:3500275
  22. Finney D. (1971) Probit Analysis, Cambridge University Press, London, UK

Cited by

  1. Isoleucine at position 150 of Cyt2Aa toxin from Bacillus thuringiensis plays an important role during membrane binding and oligomerization vol.46, pp.3, 2013, https://doi.org/10.5483/BMBRep.2013.46.3.100
  2. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests vol.110, pp.21, 2013, https://doi.org/10.1073/pnas.1222144110