Optical Dating of Sorted Circles in King George Island, Shetland Islands, West Antarctica as a Potential Time Marker for Local Glacier Retreat

남극 킹조지섬에 분포하는 원형구조토(Sorted Circles)에 대한 OSL 연대측정 적용가능성 연구

Choi, Jeong-Heon;Lim, Hyoun-Soo;Yoon, Ho-Il;Cheong, Chang-Sik;Im, Chang-Bock;Kim, Jong-Wook;Chang, Ho-Wan
최정헌;임현수;윤호일;정창식;임창복;김종욱;장호완

  • Published : 20080800

Abstract

During the deglaciation period, the glaciers dump till sediments as they melt away, thus the depositional ages of these sediments provide important information on the timing of glacial retreat(the initiation and the duration of the local deglaciation). However, in many cases, direct dating of till sediments is not readily possible because of a lack of suitable material for conventional dating methods, except where 14C dating is applicable. In addition, optical dating on these sediments has not been always successful because most glacigenic deposits usually have little chances of being exposed to sufficient sunlight, which results in significant overestimation in optical ages. The till sediments, however, sometimes form a diagnostic geomorphic structure, referred to as sorted circle, hrough repeated freeze-thaw cycles on flat areas in polar regions. In the course of its formation, the soil particles in the active layer may move up and down actively, and therefore some of these particles are presumed to have chances to be exposed to sufficient sunlight for the latent OSL signals to be completely bleached, which is one of the most important prerequisite process for reliable optical dating. To test this hypothesis, we collected sediment samples from two sorted circles at the elevation of 41 m and 66 m in King George Island, South Shetland Islands, West Antarctica. Quartz grains extracted from these sediments have various undesirable OSL properties for routine SAR-based optical dating. For instance, the OSL signals of those quartz grains do not have fast OSL component that is the usual signal for optical dating. In dose recovery test using both LM-OSL SAR and conventional SAR procedure, the recovered doses were lower than the given dose by about 10 % or less. The OSL age obtained on the basis of weighted mean De value of 18±1 Gy was 11±1 ka, which implies that the deglaciation near King Sejong station may have occurred before 11±1 ka.

빙하퇴적물의 퇴적연대는 빙하후퇴시기 및 극지기후변화 양상을 이해하는 데에 중요한 정보를 제공한다. 하지만, 연대측정 대상 퇴적물로부터 방사성동위원소 연대측정이 가능한 적절한 시료의 채취가 항상 가능한 것은 아니기 때문에, 많은 경우 빙하퇴적물에 대한 직접적인 퇴적연대측정은 한계를 지니고 있다. 더욱이 퇴적물내의 석영을 사용하기 때문에 대상 시료의 제한이 거의 없는 OSL(Optically Stimulated Luminescence) 연대측정법에 있어서도 빙하퇴적물에 포함된 석영입자의 OSL 신호가 퇴적과정 중에 완벽하게 제거되지 않아 OSL 연대측정결과가 실제 퇴적연대보다 오래된 연대를 지시하는 경우가 많다. 극지방의 평탄한 곳에서는 퇴적물 공극내의 수분이 결빙-해동과정을 반복하면서 영구동토층 상부 활동층의 입자가 수직, 수평적으로 순환을 하는 경우가 있으며, 그 결과로 크기가 큰 자갈 혹은 거력들이 내부의 세립질 입자들을 둘러싸는 원형구조토(sorted circle)라는 특징적인 지형으로 나타나기도 한다. 따라서, 원형구조토의 형성과정 동안 빙하퇴적물입자들이 순환을 하며 햇빛에 노출이 되어 기존의 OSL 신호가 제거될 기회가 크기 때문에, 다른 빙하퇴적물에 비해 상대적으로 OSL 연대측정에 적합할 것으로 판단되었다. 이 가정을 확인하기 위하여, 킹조지섬(King George Island) 세종기지 인근에 분포하는 두 개의 원형구조토(해발고도 41 m 와 66 m)에서 시료를 채취한 후, 석영입자를 분리하여 OSL 연대측정 가능성을 검토하였다. 채취한 시료의 석영입자들은 일반적인 단일시료재현법(SAR법)을 적용하여 신뢰도 높은 등가선량(equivalent dose)을 측정하기에 부적합한 OSL 특성을 보인다. 예를 들어, 채취된 석영입자의 OSL 신호에는 OSL 연대측정에 사용되는 fast OSL component가 존재하지 않는다. 또한, LM-OSL과 CW-OSL 신호를 사용한 dose recovery test에서 실험실 조사량이 약 10 % 정도 과소평가되었다. 단일시료재현법으로 측정된 등가선량의 가중평균은 18±1 Gy였고, 이를 바탕으로 한 OSL 연대결과는 11±1 ka로서, 이는 킹조지섬 세종기지 인근의 빙하후퇴가 적어도 11±1 ka 이전에 일어났을 가능성을 의미한다.

Keywords

References

  1. 최정헌, 정창식, 장호완, 2004, 석영을 이용한 OSL (Optically Stimulated Luminescence) 연대측정의 원리와 지질학적 적용. 지질학회지, 40, 567-583
  2. Alexanderson, H. and Murray, A.S., 2007, Was southern Sweden ice free at 19-25 ka, or were the post LGM glacifluvial sediments incompletely bleached? Quaternary Geochronology, 2, 229-236 https://doi.org/10.1016/j.quageo.2006.05.007
  3. Bailey, R.M. and Arnold, L.J., 2006, Statistical modelling of single grain quartz De distribution and an assessment of procedures for estimating burial dose. Quaternary Science Reviews, 25, 2475-2502 https://doi.org/10.1016/j.quascirev.2005.09.012
  4. Bailey, R.M., Smith, B.W. and Rhodes, E.J., 1997, Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements, 27, 123-136 https://doi.org/10.1016/S1350-4487(96)00157-6
  5. Bailiff, I.K., 2000, Characteristics of tim e-resolved luminescence in quartz. Radiation Measurements, 32, 401-405 https://doi.org/10.1016/S1350-4487(00)00126-8
  6. Ballantyne, C. and Matthews, J., 1983, Desiccation cracking and sorted polygonal development, Jotunheimen, Norway. Actic and Alpine Research, 15, 339-349 https://doi.org/10.2307/1550830
  7. Bjorck, S., Malmer, N., Hjort, C., Sandgren, P., Ingolfsson, O., Wallen, B., Smith, R.I.L. and Jonsson, B.L., 1998, Stratigraphic and paleoclimatic studies of a 5500- year-old moss bank on Elephant Island, Antarctica. Arctic and Alpine Research, 23, 361-374 https://doi.org/10.2307/1551679
  8. Boe, A.-G., Murray, A. and Dahl, S.O., 2007, Resetting of sediments mobilised by the LGM ice-sheet in southern Norway. Quaternary Geochronology, 2, 222-228 https://doi.org/10.1016/j.quageo.2006.05.031
  9. Botter-Jensen, L., McKeever, S.W.S. and Wintle, A.G., 2003, Optically stimulated luminescence dosimetry. Elsevier, 355 p.
  10. Botter-Jensen, L. and Murray, A.S., 1999, Developments in optically stimulated luminescence techniques for dating and retrospective dosimetry. Radiation Protection Dosimetry, 84, 307-315 https://doi.org/10.1093/oxfordjournals.rpd.a032745
  11. Bulur, E., 1996, An alternative technique for optically stimulated luminescence (OSL) experiment. Radiation Measurements, 32, 141-145 https://doi.org/10.1016/S1350-4487(99)00247-4
  12. Choi, J.H., Murray, A.S., Jain, M., Cheong, C.-S. and Chang, H.W., 2003, Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews, 22, 407-421 https://doi.org/10.1016/S0277-3791(02)00136-1
  13. Choi, J.H., Murray, A.S., Cheong, C.-S., Hong, D.G. and Chang, H.W., 2006a, Estimation of equivalent dose using quartz isothermal TL and the SAR procedure. Quaternary Geochronology, 1, 101-108 https://doi.org/10.1016/j.quageo.2006.05.010
  14. Choi, J.H., Duller, G.A.T., Wintle, A.G. and Cheong, C.-S., 2006b, Luminescence characteristics of quartz from the Southern Kenyan Rift Valley: Dose estimation using LM-OSL SAR. Radiation Measurements, 41, 847-854 https://doi.org/10.1016/j.radmeas.2006.05.003
  15. Choi, J.H., Duller, G.A.T. and Wintle, A.G., 2006c, Analysis of quartz LM-OSL curves. Ancient TL, 24, 9-20
  16. Duller, G.A.T. and Augustinus, P.C., 2006, Reassessment of the record of linear dune activity in Tasmania using optical dating. Quaternary Science Reviews, 25, 2608-2618 https://doi.org/10.1016/j.quascirev.2005.05.010
  17. Dumond, D.E. and Griffin, D.G., 2002, Measurements of the marine reservoir effect on radiocarbon ages in the Eastern Bering Sea. Arctic, 55, 77-86
  18. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. and Olley, J.M., 1999, Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, Experimental design and statistical models. Archaeometry, 41, 339-364 https://doi.org/10.1111/j.1475-4754.1999.tb00987.x
  19. Goldthwait, R.P., 1976, Frost-sorted patterned ground: A review. Quaternary Research, 6, 27-35 https://doi.org/10.1016/0033-5894(76)90038-7
  20. Hallet, B. and Prestrud, S., 1986, Dynamics of periglacial sorted circles in western Spitsbergen. Quaternary Research, 26, 81-99 https://doi.org/10.1016/0033-5894(86)90085-2
  21. Haugland, J.E., 2004, Formation of patterned ground and fine-scale soil development within two late Holocene glacial chronosequences: Jotunheimen, Norway. Geomorphology, 61, 287-301 https://doi.org/10.1016/j.geomorph.2004.01.004
  22. Hilgers, A., Murray, A.S., Schlaak, N. and Radtke, U., 2001, Comparison of quartz OSL protocols using Lateglacial and Holocene dune sands from Brandenburg, Germany. Quaternary Science Reviews, 20, 731-736 https://doi.org/10.1016/S0277-3791(00)00050-0
  23. Hjort, C., Bjorck, S., Ingolfsson, O. and Moller, P., 1998, Holocene deglaciation and climate history of the northern Antarctic Peninsula region: a discussion of correlations between the Southern and Northern Hemisphere. Annals of Glaciology, 27, 110-112 https://doi.org/10.3189/1998AoG27-1-110-112
  24. Jain, M., Choi, J.H. and Thomas, P., 2008, The ultrafast OSL component in quartz: Origins and Implications. Radiation Measurements, 43, 709-714 https://doi.org/10.1016/j.radmeas.2008.01.005
  25. Jain, M., Murray, A.S. and Botter-Jensen, L., 2003, Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements, 37, 441-449 https://doi.org/10.1016/S1350-4487(03)00052-0
  26. Jeong, G.Y., 2006, Radiocarbon ages of sorted circles on King George Island, South Shetland Islands, West Antarctica. Antarctic Science, 18, 265-270 https://doi.org/10.1017/S0954102006000307
  27. John, B.S., 1972, Evidence from the South Shetland Islands towards a glacial history of West Antarctica. In: Sugden, D.E., Price, R.J. (Eds.), Polar Geomorphology. Institute of British Geographers, pp. 75-92
  28. Kessler, M.A., Murray, A.B., Werner, B.T. and Hallet, B.,, 2001, A model for sorted circles as self-organized patterns. Journal of Geophysical Research, 106, 13,287-13,306
  29. Kessler, M.A. and Werner, B.T., 2003, Self-organization of sorted patterned ground. Sciences, 299, 380-383 https://doi.org/10.1126/science.1077309
  30. Krantz, W.B., 1990, Self-organization manifest as patterned ground in recurrently frozen soil. Earth Science Reviews, 29, 117-130 https://doi.org/10.1016/0012-8252(0)90031-P
  31. Kuhns, C.K., Larsen, N.A. and McKeever, S.W.S., 2000, Characteristics of LM-OSL from several different types of quartz. Radiation Measurements, 32, 413-418 https://doi.org/10.1016/S1350-4487(00)00065-2
  32. Lepper, K. and McKeever, S.W.S., 2002, An objective methodology for dose distribution analysis. Radiation Protection Dosimetry, 101, 349-352 https://doi.org/10.1093/oxfordjournals.rpd.a005999
  33. Li, B. and Li, S.-H., 2006, Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiation Measurements, 41, 125-136 https://doi.org/10.1016/j.radmeas.2005.06.037
  34. Martini, I.P., Brookfield, M.E. and Sadura, S., 2001, Principles of glacial geomorphology and geology. Prentice Hall, 381 p.
  35. Matsuoka, N., Abe, M. and Ijiri, A., 2003, Differential frost heave and sorted patterned ground: field measurements and a laboratory experiment. Geomorphology, 52, 73-85 https://doi.org/10.1016/S0169-555X(02)00249-0
  36. Matthews, J.A., Shakesby, R., Berrisford, M. and McEwen, L., 1998, Periglacial patterned ground on the Styggedalsbreen glacier foreland, Jotunheimen, southern Norway: micro-topographic, paraglacial and geoecological controls. Permafrost and Periglacial Processes, 9, 147-166 https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2<147::AID-PPP278>3.0.CO;2-9
  37. Murray, A.S. and Olley, J.M., 2002, Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria, 21, 1-16
  38. Murray, A.S., Roberts, R.G. and Wintle, A.G., 1997, Equivalent dose measurement using a single aliquot of quartz. Radiation Measurements, 27, 171-184 https://doi.org/10.1016/S1350-4487(96)00130-8
  39. Murray, A.S. and Wintle, A.G., 2000, Luminescence dating of quartz using an improved single-aliquot regenerative- dose protocol. Radiation Measurements, 32, 57-73 https://doi.org/10.1016/S1350-4487(99)00253-X
  40. Murray, A.S. and Wintle, A.G., 2003, The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements, 37, 377-381 https://doi.org/10.1016/S1350-4487(03)00053-2
  41. Olley, J.M., Caitcheon, G. and Murray, A.S., 1998, The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications for dating young sediments. Quaternary Science Reviews, 17, 1033-1040 https://doi.org/10.1016/S0277-3791(97)00090-5
  42. Olley, J.M., Murray, A.S. and Roberts, R.G., 1996, The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews, 15, 751-760 https://doi.org/10.1016/0277-3791(96)00026-1
  43. Poolton, N.R.J., Bulur, E., Wallinga, J., Botter-Jensen, L., Murray, A.S. and Willumsen, F., 2001, An automated system for the analysis of variable temperature radioluminescence. Nuclear Instruments and Methods in Physics Research B, 179, 575-584 https://doi.org/10.1016/S0168-583X(01)00605-X
  44. Prescott, J.R. and Hutton, J.T., 1988, Cosmic ray and gamma ray dosimetry for TL and ESR. Nuclear Tracks and Radiation Measurements, 14, 223-227 https://doi.org/10.1016/1359-0189(88)90069-6
  45. Prescott, J.R. and Hutton, J.T., 1994, Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements, 23, 497-500 https://doi.org/10.1016/1350-4487(94)90086-8
  46. Rhodes, E.J. and Pownall, L., 1994, Zeroing of the OSL signal in quartz from young glaciofluvial sediments. Radiation Measurements, 23, 329-333 https://doi.org/10.1016/1350-4487(94)90060-4
  47. Rhodes, E.J., 2000, Observation of thermal transfer OSL signals in glacigenic quartz. Radiation Measurements, 32, 595-602 https://doi.org/10.1016/S1350-4487(00)00125-6
  48. Singarayer, J.S. and Bailey, R.M., 2003, Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements, 37, 451-458 https://doi.org/10.1016/S1350-4487(03)00062-3
  49. Smith, B.W., Aitken, M.J., Rhodes, E.J., Robinson, P.D. and Geldard, D.M., 1986, Optical dating: Methodological aspects. Radiation Protection Dosimetry, 17, 229-233 https://doi.org/10.1093/oxfordjournals.rpd.a079813
  50. Smith, B.W. and Rhodes, E.J., 1994, Charge movements in quartz and their relevance to optical dating. Radiation Measurements, 23, 329-333 https://doi.org/10.1016/1350-4487(94)90060-4
  51. Sugden, D.E. and Clapperton, C.M., 1986, Glacial history of the Antarctic Peninsula and South Georgia. South African Journal of Science, 82, 508-509
  52. Wallinga, J., Murray, A.S., Duller, G.A.T. and Tornqvist, T.E., 2001, Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits. Earth and Planetary Science Letters, 193, 617-630 https://doi.org/10.1016/S0012-821X(01)00526-X
  53. Watanuki, T., Murray, A.S. and Tsukamoto, S., 2005, Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: Comparison with an independent chronology. Earth and Planetary Science Letters, 240, 774-789 https://doi.org/10.1016/j.epsl.2005.09.027
  54. Wintle, A.G., 1973, Anomalous fading of thermoluminescence in mineral samples. Nature, 245, 143-144 https://doi.org/10.1038/245143a0
  55. Wintle, A.G. and Murray, A.S., 2006, A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41, 369-391 https://doi.org/10.1016/j.radmeas.2005.11.001
  56. Yoon, H.I., Han, M.W., Park, B.-K., Oh, J.-K. and Chang, S.-K., 1997, Glaciomarine sedimentation and palaeo- glacial setting of Maxwell Bay and its tributary embayment, Marian Cove, in the South Shetland Islands, West Antarctica. Marine Geology, 140, 265-282 https://doi.org/10.1016/S0025-3227(97)00028-5
  57. Yoon, H.I., Park, B.K., Kim, Y. and Kim, D., 2000, Glaciomarine sedimentation and its paleoceanographic implications along the fjord margins in the South Shetland Islands, Antarctica during the last 6000 years. Paleogeography, Paleoclimatology, Paleoecology, 157, 189-211 https://doi.org/10.1016/S0031-0182(99)00165-0
  58. Zimmerman, D.W., 1971, Thermoluminescent dating using fine grains from pottery. Archaeology, 13, 29-52