DOI QR코드

DOI QR Code

Densification of Al2O3 Nanopowder by Magnetic Pulsed Compaction and Their Properties

자기펄스 가압성형법에 의한 알루미나 나노분말의 치밀화 및 특성 평가

  • Kang, R.C. (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, M.K. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, W.W. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Rhee, C.K. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Hong, S.J. (Division of Advanced Materials Engineering, Kongju National University)
  • 강래철 (공주대학교 신소재공학부) ;
  • 이민구 (한국원자력연구원 재료연구부) ;
  • 김홍회 (한국원자력연구원 재료연구부) ;
  • 이창규 (한국원자력연구원 재료연구부) ;
  • 홍순직 (공주대학교 신소재공학부)
  • Published : 2008.02.28

Abstract

This article presents the challenges toward the successful consolidation of $Al_2O_3$ nanopowder using magnetic pulsed compaction (MPC). In this research the ultrafine-structured $Al_2O_3$ bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were investigated. The obtained density of $Al_2O_3$ bulk prepared by the combined processes was increased with increasing MPC pressure from 0.5 to 1.25 GPa. Relatively higher hardness and fracture toughness in the MPCed specimen at 1.25 GPa were attributed to the retention of the nanostructure in the consolidated bulk without cracks. The higher fracture toughness could be attributed to the crack deflection by homogeneous distribution and the retention of nanostructure, regardless of the presence of porosities. In addition, the as consolidated $Al_2O_3$ bulk using magnetic pulsed compaction showed enhanced breakdown voltage.

Keywords

References

  1. M. E. Washburn: Am. Cer. Soc. Bull., 67(2) (1988) 356
  2. E. Doerre: Alumina-Processing, Properties, and Applications, Springer-Verlag, (1984)
  3. W. H. Rhodes: J. Am. Ceram. Soc., 64 (1981) 19 https://doi.org/10.1111/j.1151-2916.1981.tb09552.x
  4. F. W. Dynys and J. W. Halloran: J. Am. Ceram. Soc., 67 (1984) 596 https://doi.org/10.1111/j.1151-2916.1984.tb19601.x
  5. J. Besson and M. Abouaf: J. Am. Ceram. Soc., 75 (1992) 2165 https://doi.org/10.1111/j.1151-2916.1992.tb04479.x
  6. J. Xu and R. M. McMeeking: Int. J. Mech. Sci., 34 (1992) 167 https://doi.org/10.1016/0020-7403(92)90081-Q
  7. K. R. Venkatachai and R. Raj: J. Am. Ceram. Soc., 69 (1986) 499 https://doi.org/10.1111/j.1151-2916.1986.tb07452.x
  8. B. H. Rabin, G.. E. Korth and R. L. Williamson: J. Am. Ceram. Soc., 73 (1990) 2156 https://doi.org/10.1111/j.1151-2916.1990.tb05294.x
  9. M. Ishiyama: Powder Metallurgy World Congress, Kyoto, Japan, (1993) 931
  10. R. A. Andrievski: Intern. J. Powder Met., 30 (1994) 59
  11. H.W. Lee, J. H. Lee, H.W. Jun and H. Moon: J. Kor. Ceram. Soc., 37 (2000) 1072
  12. W. Gitzen (Ed.): Am. Ceram. Soc. Pub. Columbus, OH, (1970) 43
  13. D. H. Carter, J. J. Petrovic, R. E. Honnell and W. S. Gibbs: Re LA-11577-MS, Los Alamos National Laboratory, (1989)

Cited by

  1. Densification of Mo Nanopowders by Ultra High Pressure Compaction vol.28, pp.3, 2018, https://doi.org/10.3740/MRSK.2018.28.3.166