DOI QR코드

DOI QR Code

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells

지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도

  • Lee, Jae-Jun (Departments of Internal Medicine and Biochemistry, Dongeui University College of Oriental Medicine) ;
  • Shin, Dong-Hyuk (Department of Biomaterial Control, Dongeui University Graduate School) ;
  • Park, Sang-Eun (Departments of Internal Medicine and Biochemistry, Dongeui University College of Oriental Medicine) ;
  • Kim, Won-Il (Departments of Internal Medicine and Biochemistry, Dongeui University College of Oriental Medicine) ;
  • Park, Dong-Il (Departments of Internal Medicine and Biochemistry, Dongeui University College of Oriental Medicine) ;
  • Choi, Yung-Hyun (Department of Biomaterial Control, Dongeui University Graduate School) ;
  • Hong, Sang-Hoon (Departments of Internal Medicine and Biochemistry, Dongeui University College of Oriental Medicine)
  • 이재준 (동의대학교 한의과대학 내과학교실) ;
  • 신동역 (동의대학교 생화학교실 및 대학원 바이오물질제어학과) ;
  • 박상은 (동의대학교 한의과대학 내과학교실) ;
  • 김원일 (동의대학교 한의과대학 내과학교실) ;
  • 박동일 (동의대학교 한의과대학 내과학교실) ;
  • 최영현 (동의대학교 생화학교실 및 대학원 바이오물질제어학과) ;
  • 홍상훈 (동의대학교 한의과대학 내과학교실)
  • Published : 2008.01.31

Abstract

The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.

본 연구에서는 지금초 열수 추출물(WEEH)의 처리에 의한 TRAIL 저항성 인체 위암세포의 증식 억제와 연관된 apoptosis유발에 관한 기전 해석을 시도하였다. 이를 위하여 AGS 세포주가 사용되었으며 다음과 같은 결과를 얻었다. 본 연구에서 조사된 범위 내에서의 TRAIL (200 ng/ml) 및 WEEH (0.04 mg/ml)의 단독 처리에 의한 AGS 세포에 유의적인 세포 독성을 나타내지 않았다. 그러나 TRAIL 및 WEEH의 혼합 처리는 WEEH의 처리 농도의존적으로 AGS 세포의 증식을 억제하였으며, 이는 apoptosis 유발에 의한 것임을 MTT assay, 핵의 염색질 응축 및 세포주기 sub-G1기에 속하는 세포빈도의 증가 등으로 확인하였다. TRAIL 및 WEEH 혼합 처리에 의한 apoptosis 유발 기전의 해석을 위하여 다양한 생화학적 분석법에 의하여 조사된 결과에 의하면, TRAIL 및 WEEH 혼합처리에 의한 caspase-8의 활성화에 의한 BID의 truncation화 및 이와 연관된 미토콘드리아 기능의 손상에 따른 caspase-9의 활성화와 연관성이 있었다. 이러한 미토콘드리아 기능 손상 및 caspase-9의 활성화는 Bcl-2, Bcl-xL, XIAP 및 cIAP-2등과 같은 anti-apoptotic 인자들의 발현 저하와 연관성이 있는 것이며, 이로 인한 caspase-3의 활성화에 의한 PARP 단백질의 단편화 유도로 apoptosis가 일어난 것으로 예측되어 진다. 비록 부가적인 연구들이 요구되어지지만, 본 연구의 결과는 TRAIL저항성 암세포의 항암전략에 지금초 추출물의 적용 가능성을 보여주는 것으로서 지금초의 항암작용의 규명에 중요한 자료를 제공하여 줄 것으로 생각된다.

Keywords

References

  1. Anderson, D. M., E. Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko, E. R. Roux, M. C. Teepe, R. F. DuBose, D. Cosman and L. Galibert. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179. https://doi.org/10.1038/36593
  2. Antonsson, B. and J. C. Martinou. 2000. The Bcl-2 protein family. Exp. Cell Res. 256, 50-57. https://doi.org/10.1006/excr.2000.4839
  3. Barranco, S. C., C. M. Townsend, Jr. C. Casartelli, B .G. Macik, N. L. Burger, W.R. Boerwinkle and W. K. Gourley. 1983. Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach. Cancer Res. 43, 1703-1709.
  4. Bodmer, J. L., K. Burns, P. Schneider, K. Hofmann, V. Steiner, M. Thome, T. Bornand, M. Hahne, M. Schroter, K. Becker, A. Wilson, L. E. French, J. L. Browning, H. R. MacDonald and J. Tschopp. 1997. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas (Apo-1/CD95). Immunity 6, 79-88. https://doi.org/10.1016/S1074-7613(00)80244-7
  5. Choi J. G. 2006. The medicine of grasses flowers and trees 2, pp. 193-201, Hanmunwha, Seoul.
  6. Chu, X. L., C. S. Fan and Y. Z. Luo. 1997. Identification of Euphorbia humifusa Wind, and E. maculata Raf. from its confused species E. thymifolia L. Zhongguo Zhong Yao Za Zhi 19, 325-357.
  7. French, L. E. and J. Tschopp. 1999. The TRAIL to selective tumor death. Nat. Med. 5, 146-147. https://doi.org/10.1038/5505
  8. Gerschenson, L. E. and R. J. Rotello. 1992. Apoptosis: a different type of cell death. FASEB J. 6, 2450-2455. https://doi.org/10.1096/fasebj.6.7.1563596
  9. Griffith, T. S. and D. H. Lynch. 1998. TRAIL: a molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 10, 559-563. https://doi.org/10.1016/S0952-7915(98)80224-0
  10. Holcik, M., H. Gibson and R. G. Korneluk. 2001. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6, 253-261. https://doi.org/10.1023/A:1011379307472
  11. Hussein, M. R., A. K. Haemel and G. S. Wood. 2003. Apoptosis and melanoma: molecular mechanisms. J. Pathol. 199, 275-288. https://doi.org/10.1002/path.1300
  12. Jin, C. Y., C. Park, J. H. Cheong, B. T. Choi, T. H. Lee, J. D. Lee, W. H. Lee, G. Y. Kim, C. H. Ryu and Y. H. Choi, 2007. Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3. Cancer Lett. 257, 56-64. https://doi.org/10.1016/j.canlet.2007.06.019
  13. Jung, E. M., J. H. Lim, T. J. Lee, J. W. Park, K. S. Choi and T. K. Kwon, 2005. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis 26, 1905-1913. https://doi.org/10.1093/carcin/bgi167
  14. Jurgensmeier, J. M., Z. Xie, Q. Deveraux, L. Ellerby, D. Bredesen and J. C. Reed. 1998. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 4997-5002. https://doi.org/10.1073/pnas.95.9.4997
  15. Kaufmann, S. H., S. Desnoyers, Y. Ottaviano, N. E. Davidson and G. G. Poirier. 1993. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis, Cancer Res. 53, 3976-3985.
  16. Kelley, J. Rand J. M. Duggan. 2003. Gastric cancer epidemiology and risk factors. J. Clin. Epidemiol. 56, 1-9. https://doi.org/10.1016/S0895-4356(02)00534-6
  17. Kim, Y. H., J. W. Park, J. Y. Lee and T. K. Kwon, 2004. Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 25, 1813-1820. https://doi.org/10.1093/carcin/bgh188
  18. Kischkel, F. C., D. A. Lawrence, A Chuntharapai, P. Schow, K. J. Kim and A. Ashkenazi. 2000. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620. https://doi.org/10.1016/S1074-7613(00)80212-5
  19. Lazebnik, Y. A., S. H. Kaufmann, S. Desnoyers, G. G. Poirier and W. C. Earnshaw. 1994. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  20. Miyashita, T. and J. C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299. https://doi.org/10.1016/0092-8674(95)90412-3
  21. Myong, Y.H. and Y.H. Choi. 2007. Gastric cancer; Epidemiology and causes. Cancer Prev. Res. 12, 143-153.
  22. Nozawa, F., A. Itami, M. Saruc, M. Kim, J. Standop. K. S. Picha, K. H. Cowan and P. M. Pour. 2004. The combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) and genistein is effective in inhibiting pancreatic cancer growth. Pancreas 29, 45-52. https://doi.org/10.1097/00006676-200407000-00055
  23. Park, S. Y. and D. W. Seol. 2002. Regulation of Akt by EGF-R inhibitors, a possible mechanism of EGF-R inhibitor-enhanced TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun. 295, 515-518. https://doi.org/10.1016/S0006-291X(02)00719-2
  24. Reed, J. C. 1998. Bcl-2 family proteins. Oncogene 17, 3225-3236. https://doi.org/10.1038/sj.onc.1202591
  25. Rosse, T., R. Olivier, L. Monney, M. Rager, S. Conus, I. Fellay, B. Jansen and C. Borner. 1998. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499. https://doi.org/10.1038/35160
  26. Schultz, D. R. and W. J. Harrington Jr. 2003. Apoptosis: programmed cell death at a molecular level. Semin. Arthritis Rheum. 32, 345-369. https://doi.org/10.1053/sarh.2003.50005
  27. Srivastava, R. K. 2001. TRAIL/ Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3, 535-546. https://doi.org/10.1038/sj.neo.7900203
  28. Tewari, M., L. T. Quan, K. O'Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen and V. M. Dixit. 1995. Yama/CPP32 $\beta$, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81, 801-809. https://doi.org/10.1016/0092-8674(95)90541-3
  29. Walczak, H., R. E. Miller, K. Ariail, B. Gliniak, T. S. Griffith, M. Kubin, W. Chin, J. Jones, A. Woodward, T. Le, C. Smith, P. Smolak, P. G. Goodwin, C. T. Rauch, J. C. Schuh and D.H. Lynch. 1999. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5, 157-163. https://doi.org/10.1038/5517
  30. Wang, S. and S. W. EI-Deiry. 2003. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628-8633. https://doi.org/10.1038/sj.onc.1207232
  31. Yang, L. Q., D. C. Fang, Q. R. Wang and S. M. Yang. 2004. Effect of NF-$\kappa$B, survivin, Bcl-2 and caspase-3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World J. Gastroenterol. 10, 22-25. https://doi.org/10.3748/wjg.v10.i1.22
  32. Yoshida, T., Y. Amakura, Y. Z. Liu and T. Okuda. 1994. Tannins and related polyphenols of euphorbiaceous plants. XI. Three new hydrolyzable tannins and a polyphenol glucoside from Euphorbia humifusa. Chem. Pharm. Bull. (Tokyo) 42, 1803-1807. https://doi.org/10.1248/cpb.42.1803
  33. Zhang, X. D., A. Franco, K. Myers, C. Gray, T. Nguyen and P. Hersey. 1999. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res. 59, 2747-2753.

Cited by

  1. The Effect of Ultrasonificated Extracts of Spirulina maxima on the Anticancer Activity vol.13, pp.2, 2011, https://doi.org/10.1007/s10126-010-9282-2
  2. Antioxidative and Anticancer Activities of Water Extracts from Different Parts of Taraxacum coreanum Nakai Cultivated in Korea vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1234
  3. Antioxidant Activity and Cytotoxicity of Ethanol Extracts from Different Parts of Taraxacum coreanum Nakai cultivated in South Korea vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.594
  4. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water vol.14, pp.6, 2013, https://doi.org/10.3390/ijms140612205