DOI QR코드

DOI QR Code

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method

낙사법으로 조성된 대형 석고 고결시료의 균질성

  • Lee, Moon-Joo (Dept. of Civil, Environ., and Architectural Engrg., Korea Univ.) ;
  • Choi, Sung-Kun (Dept. of Civil, Environ., and Architectural Engrg., Korea Univ.) ;
  • Choo, Hyun-Wook (Dept. of Civil, Environ., and Architectural Engrg., Korea Univ.) ;
  • Cho, Yong-Soon (Dept. of Civil, Environ., and Architectural Engrg., Korea Univ.) ;
  • Lee, Woo-Jin (Dept. of Civil, Environ., and Architectural Engrg., Korea Univ.)
  • 이문주 (고려대학교 건축.사회환경공학과) ;
  • 최성근 (고려대학교 건축.사회환경공학과) ;
  • 추현욱 (고려대학교 건축.사회환경공학과) ;
  • 조용순 (고려대학교 건축.사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학과)
  • Published : 2008.01.31

Abstract

The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

본 연구에서는 대형 챔버에 낙사법에 의한 고결시료 조성시 모래와 고결유발제인 석고의 재료분리를 방지하기 위한 방법을 검토하고, 콘관입시험, 딜라토미터 시험, 벤더엘리먼트 시험을 수행하여 조성된 시료의 균질성을 평가하였다. 시료 낙사시 발생하는 재료분리를 최소화하기 위해 모래 중량비 0.5%의 물로 모래시료 표면을 습윤시키고, 석고를 모래표면에 골고루 흡착시킨 후 시료를 낙사하였다. 일반적인 세립분 포함 모래시료와 같이 건조상태 모래와 석고의 혼합시료는 석고함유율이 증가할수록 최대/최소 간극비가 감소하였지만, 습윤상태 모래와 석고의 혼합시료는 석고함유율이 적은 초기의 최대/최소 간극비가 증가하는 경향을 보였다. 조성된 시료의 연직방향 론선단저항, 딜라토미터 수평응력지수, 딜라토미터 계수, 재료지수, 그리고 수평방향 전단파속도는 매우 균등하게 측정되었으며, 이로써 시료의 균질성이 매우 양호한 것으로 평가된다.

Keywords

References

  1. 이문주, 최성근, 추현욱, 조용순, 이우진 (2007), "응력조건에 따른 고결모래의 강도정수 평가", 한국지반공학회논문집, 제23권, 6호, pp.143-151
  2. 최성근, 이문주, 추현욱,홍성진, 이우진(2007),"Porousplate를 이용한 개선된 레이닝 시스템", 한국지반공학회논문집, 제23권, 6호, pp.67-76
  3. Acar, Y.B. and El-Tahir, E.A. (1986), "Low strain dynamic properties of artificially cemented sand" J. Geotech. Engrg., ASCE, Vol.112, No.2, pp.207-213 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:2(207)
  4. Been, K., Crooks, J.H, Becker, D.E. and Jefferies, M.G. (1986), "The cone penetration test in sand : part I, state parameter interpretation" Geotechnique, Vol.36, No.2, pp.239-249 https://doi.org/10.1680/geot.1986.36.2.239
  5. Bellotti, R., Benoit, J. Fretti, C. and Jamiolkowski, M. (1997), "Stiffness of Toyoura sand from dilatometer tests" J. Geotech. Geoenviron. Engrg., ASCE, Vol.123, No.9, pp.836-846 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(836)
  6. Clough, W.G., Sitar N., and Bachus R. (1981), "Cemented sands under static loading" Geotech. Engrg. Div., ASCE, Vol.107, No.6, pp.799-817
  7. Coop, M.R. and Atkinson, J.H. (1993), "The mechanics of cemented carbonate sands", Geotechnique, Vol.43, No.1, pp.53-67 https://doi.org/10.1680/geot.1993.43.1.53
  8. Gilbert, P.A. (1984), "Investigation of density variation in triaxial test specimens of cohesionless soil subjected to cyclic and monotonic loading", Technical Report GL-84-10, U.S. Army Engineer Waterway Experiment Station, Vicksburg, MS
  9. Haeri, S.M., Hosseini, S.M., Toll, D.G. and Yasrebi, S.S. (2005a), "The behaviour of an artificially cemented sandy gravel", Geotech. Geological Engrg., Vol.23, pp.537-560 https://doi.org/10.1007/s10706-004-5110-7
  10. Haeri, S.M., Hamidi, A. and Tabatabaee, N. (2005b), "The effect of gypsum cementation on the mechanical behavior of gravely sands", Geotech. Testing J., ASTM, Vol.28, No.4, pp.1-11
  11. Huang, J.T. and Airey, D.W. (1998), "Properties of artificially cemented carbonate sand", J. Geotech. Engrg., ASCE, Vol.124, No.6, pp.492-499 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)
  12. Ismail, M.A., Joer, H.A., and Randolph, M.F. (2002), "Cementation of porous materials using calcite", Geotechnique, Vol.52, No.5, pp.313-324 https://doi.org/10.1680/geot.52.5.313.38709
  13. Jacobsen, M. (1976), "On pluvial compaction of sand", Rapport9, Aalborg Universitetscenter, Laboratoriet for Fundering, pp.20
  14. Kolbuszewski, J.J. (1948), "An Experimental Study of the Maximum and Minimum Porosities of sands", Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, London, pp.158-165
  15. Kuerbis, R. and Vaid, Y.P. (1988), "Sand sample preparation - the slurry deposition method", Soils and Found., Vol.28 No.4, pp. 107-118
  16. Kuerbis, R., Nequssey, D. and Vaid, Y.P. (1988), "Effect of gradation and fines content on the undrained response of sand", Hydraulic fill structures, Geotech. Spec. Pulb. No.21, ASCE, New York, pp.330-345
  17. Lade, P.V, and Yamamuro, J.A. (1997), "Effects of non-plastic fines on static liquefaction of sands", Can. Geotech. J., NRC, Vol.34, pp.918-928 https://doi.org/10.1139/cgj-34-6-918
  18. Lade, P.V., Liggio, C.D. and Yamamuro, J.A. (1998), "Effects of non-plastic fines on minimum and maximum void ratios of sand", Geotech. Testing J., ASTM, Vol.21, No.4, pp.336-347 https://doi.org/10.1520/GTJ11373J
  19. Miura S. and Toki S. (1982), "Sample Preparation method and its effect on static and cyclic deformation-strength properties of sand", Soils and Found., Vol.22, No.1, pp.61-77 https://doi.org/10.3208/sandf1972.22.61
  20. Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan, K. (1977), "Effects of sample preparation on sand liquefaction", J. Geotech. Engrg., ASCE, Vol.103, No.2, pp.91-108
  21. Puppala, A.J., Acar, Y.B. and Tumay, M.T. (1995), "Cone penetration in very weakely cemented sand", J. Geotech. Engrg., ASCE, Vol.121, No.8, pp.589-600 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589)
  22. Rad, N. S., and Tumay, M. T. (1986), "Effect of cementation on penetration resistance of sand-a model study", Geotech. Testing J., ASTM, Vol.9, No.3, pp.117-125 https://doi.org/10.1520/GTJ10617J
  23. Salgado, R., Mitchell, J.K. and Jamiolkowski, M. (1998), "Calibration chamber size effects on penetration resistance in sand", J. Geotech. Geoenviron. Engrg., ASCE, Vol.124, No.9, pp.878-888 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878)
  24. Salgado, R., Bandini, P. and Karim, A. (2000), "Shear strength and stiffness of silty sand", J. Geotech. Geoenviron. Engrg., ASCE, Vol.126, No.5, pp.451-462 https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)
  25. Sharma, S.S. and Fahey, M. (2003), "Degration of stiffness of cemented calcareous soil in cyclic triaxial tests", J. Geotech. Geoenviron. Engrg., ASCE, Vol.129, No.7, pp.619-629 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(619)
  26. Vaid, Y.P. and Nequssey, D. (1984), "Relative densty of air and water pluviated sand", Soils and Found., Vol.24, No.2, pp.101-105
  27. Yun, T.S. and Santamarina, J.C. (2005), "Decementation, softening, and collapse : changes in small-strain shear stiffness in k0 loading", J. Geotech. Engrg., ASCE, Vol.131, No.3, pp.350-358 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350)