Hydrogeochemical, Stable and Noble Gas Isotopic Studies of Hot Spring Waters and Cold Groundwaters in the Seokmodo Hot Spring Area of the Ganghwa Province, South Korea

강화 석모도 지역 온천수와 지하수의 수리지구화학 및 동위원소 연구

  • Kim, Kyu-Han (Department of Science Education, Ewha womas University) ;
  • Jeong, Yun-Jeong (Department of Science Education, Ewha womas University) ;
  • Jeong, Chan-Ho (Department of Geotechnical Design Engineering, Daejeon University) ;
  • Keisuke, Nagao (Laboratory for Earthquake Chemistry, Graduate School of Science, University of Tokyo)
  • 김규한 (이화여자대학교 과학교육과) ;
  • 정윤정 (이화여자대학교 과학교육과) ;
  • 정찬호 (대전대학교 지반설계정보공학과) ;
  • 장미경개 (도쿄대학 지진지화학연구실)
  • Published : 2008.02.28

Abstract

The hydrochemical and isotopic (stable isotopes and noble gas isotopes) analyses for hot spring waters, cold groundwaters and surface water samples from the Seokmodo hot spring area of the Ganghwa province were carried out to characterize the hydrogeochemical characteristics of thermal waters and to interpret the source of thermal water and noble gases and the geochemical evolution of hot spring waters in the Seokmodo geothermal system. The hot spring waters and groundwaters show a weakly acidic condition with the pH values ranging from 6.42 to 6.77 and 6.01 to 7.71 respectively. The outflow temperature of the Seokmodo hot spring waters ranges from $43.3^{\circ}C\;to\;68.6^{\circ}C$. Relatively high values of the electrical conductivities which fall between 60,200 and $84,300{\mu}S/cm$ indicate that the hot spring waters were mixed with seawater in the subsurface geothermal system. The chemical compositions of the Seokmodo hot spring waters are characterized by Na-Ca-Cl water type. On the other hand, cold groundwaters and surface waters can be grouped into three types such as the Na(Ca)-$HCO_3$, Na(Ca)-$SO_4$ and Ca-$HCO_3$ types. The ${\delta}^{18}O\;and\;{\delta}D$ values of hot spring waters vary from -4.41 to -4.47%o and -32.0 to -33.5%o, respectively. Cold groundwaters range from -7.07 to -8.55%o in ${\delta}^{18}O$ and from -50.24 to -59.6%o in ${\delta}D$. The oxygen and hydrogen isotopic data indicate that the hot spring waters were originated from the local meteoric water source. The enrichments of heavy isotopes ($^{18}O\;and\;^2H$) in the Seokmodo hot spring waters imply that the thermal water was derived from the diffusion Bone between fresh and salt waters. The ${\delta}^{34}S$ values ranging from 23.1 to 23.5%o of dissolved sulfate are very close to the value of sea water sulfate of ${\delta}^{34}$S=20.2%o in this area, indicating the origin of sulfate in hot springs from sea water. The $^3H/^4He$ ratio of hot spring waters varies from $1.243{\times}10^{-6}\;to\;1.299{\times}10^{-6}cm^3STP/g$, which suggests that He gas in hot spring waters was partly originated from a mantle source. Argon isotopic ratio $(^{40}Ar/^{36}Ar=298{\times}10^{-6}cm^3STP/g)$ in hot spring waters corresponds to the atmospheric value.

강화 석모도 지역 석모도 온천수의 영족기체와 온천수의 지화학적 진화와 기원을 해석하고 온천수의 지화학적 특성을 규명하기 위해 온천수, 지하수, 지표수의 수리화학, 안정 동위원소, 영족기체 동위원소 분석이 이루어졌다. 온천수와 지하수의 pH는 각각 $6.42{\sim}6.77,\;6.01{\sim}7.71$로 약산성을 보이고 있다. 석모도 온천 지역의 온천수의 유출수온은 $43.3{\sim}68.6^{\circ}C$이다. 온천수의 전기전도도는 $60,200{\sim}84,300{\mu}S/cm$으로 비교적 높은 값이며 석모도 온천수가 해수와 혼합되어졌음을 암시하고 있다. 석모도 온천수의 화학 조성은 Na-Ca-Cl형이다. 반면, 지하수와 지표수는 각각 Na(Ca)-$HCO_3$, Na(Ca)-$SO_4$형과 Ca-$HCO_3$ 형으로 구분된다. 석모도 온천수의 산소와 수소 동위원소비는 각각 $-4.41{\sim}-4.47%o$$-32.0{\sim}-33.5%o$로 순환수 기원이다. 지하수에서의 산수 수소 동위원소비는 각각 $-7.07{\sim}-8.55%o,\;-50.24{\sim}-59.6%o$이다. 석모도 온천수에 $^{18}O$$^2H$가 부화된 특성은 온천수가 담수와 해수의 혼합대에서 유래되었음을 암시하고 있다. 석모도 온천수 중의 황산염이온의 황 동위원소비는 $23.1{\sim}23.5%o$로 이 지역 해수의 황 동위원소비(20.2%o)와 유사하다. 이는 온천수의 황이 해수의 황산염으로부터 유래되었음을 의미한다. 석모도 온천수의 $^3He/^4He$ 비는 $1.243{\times}10^{-6}{\sim}1.299{\times}10^{-6}cm^3STP/g$로 온천수 중의 He 가스가 부분적으로 맨틀에서 유래되었음을 보여준다. 온천수에서의 아르곤 동위원소비$(^{40}Ar/^{36}Ar=298{\times}10^{-6})cm^3STP/g$는 대기기원의 값을 보인다.

Keywords

References

  1. Aka, F. T., Kusakabe, M., Nagao, K. and Tanyileke, G. (2000) Noble gas isotopic compositions and water/gas chemistry of soda springs from the island of Bioko, So Tom and Annobon, along with Cameroon volcanic line, West Africa. App. Geochem., v. 16, p. 323-338
  2. An, S. W. (2005) Hydrogeochemistry, stable and helium gas isotope of hot spring waters in the Bugok- Magumsan area. MS thesis, Daejeon University, 68p
  3. Chae, G. T., Yun, S. T., Kim, K. and Mayer, B. (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrogic mixing. Jour. Hydrol., v. 321, p. 326-343 https://doi.org/10.1016/j.jhydrol.2005.08.006
  4. Choi, H. G. (2005) Hydrogeochemical and isotopic studies of hot spring waters in the eastern hot spring areas of the Korean peninsula. MS thesis, Ewha Womans University, 71p
  5. Choi, H. S., Koh, Y. K., Bae, D. S., Park, S. S. Hutcheon, I. and Yun, S. T. (2005) Estimation of deep reservoir temperature of CO2-rich springs in Kangwon district, South Korea. Jour. Volcanol. Geotherm. Res., v. 141, p. 77-89 https://doi.org/10.1016/j.jvolgeores.2004.10.001
  6. Craig, H. (1961) Isotopic variations in meteoric water. Science, v. 133, p. 1702-1703 https://doi.org/10.1126/science.133.3465.1702
  7. Heo, H. S. (2005) Hydrogeochemistry and noble gas geochemistry of hot spring waters in the Honam area. MS thesis, Ewha Womans University, 59p
  8. Jeong, J. G., Suh, M. C., Kim, K. S. and Hwang, H. J. (1997) Characterization on the geological structures and geothermal gradient distribution in the Yusong area. Jour. Engin. Geol. v. 7, p. 173-189
  9. Kim, G. Y., Koh, Y. K., Choi, H. S., Kim, C. S. and Bae, D. S. (2000) Mineralogy and geochemistry of carbonate precipitates from $CO_2$-rich water in the Jungwon area. J. Miner. Soc. Korea, v. 13, p. 22-36
  10. Kim, K. H. and Nakai, N. (1981) A study on hydrogen, oxygen and sulfur isotopic ratios of the hot spring waters in South Korea. Chikyugagak v. 15, p. 6-16
  11. Kim, K. H. and Choi, H. J. (1998) A geochemical study on the thermal water and groundwater in the hot spring area, South Korea. Jour. Korean Earth Sci. Soc., v. 19, p. 22-34
  12. Kim, K. H. (2007) A hot spring of Korea. Ewha Womans University Press, 238p
  13. Kim, H. J. (1957) Mineral springs in North Korea. Science Institute, DPRK
  14. Koh, Y. K., Kim, C. S., Bae, D. S. and Lee, D. I. (2000) Hydrochemistry and environmental isotope studies of the deep groundwater in the Munkyeong area. Econ. Environ. Geol., v. 33, p. 469-489
  15. Koh, Y. K., Kim, S. Y., Kim, C. S., Kim, G. Y. and Choi, H. S. (2001a). Geochemical evolution of the Bugok geothermal waters. Proceedings of Annual Meeting, Korea Soc. Econ. Environ. Geol. p. 400-403
  16. Koh, Y. K., Yun, S. T., Kim, C. S., Bae, D. S. and Park, S. S. (2001b) Geochemical evolution and deep environment of the geothermal waters in the Bugok area: Reconsideration on the origin of sulfate-type geothermal water. Econ. Environ. Geol., v. 34, p. 329-343
  17. Koh, Y. K., Kim, G. Y., Kim, C. S., Bae, D. S. and Sung, K. Y. (2003) Deep environment of Dongrae hot spring water. Jour. Groundwater, Proceedings of Annual Meeting of Korea Soc. Soil Environ. p. 583-586
  18. Kusakabe M., Ohwada M., Satake H., Nagao K. and Kawasaki I. (2003) Helium isotope ratio and geochemistry of volcanic fluids from the Norikura volcanic chain, Central Japan: Implications for crustal structures and sismicity. Econ. Geologists, v. 10, p. 75-89
  19. Lee, J. R. (2003) Hydrogeological characteristics of the Whasoon hot spring area. MS thesis, Pusan University, 87p
  20. Lee, J. U., Chon, H. T. and John, Y. W. (1997) Geochemical characteristics of deep granitic groundwater in Korea. Jour. Korean Soc. Groundwater Environ., v. 4, p.199-211
  21. Lee, S. G., Kim, T. K., Lee, J. S. and Song, Y. H. (2006) Rb-Sr Isotope geochemistry in Seokmodo granitoids and hot spring, Gangwha: An application of Sr isotope for clarifying the source of hot spring. Jour. Petrol. Soc. Korea, v. 15, p. 60-71
  22. Matsuda, J., Amari, S. and Nagao, K. (1999) Purely physical separation of a small fraction of the Allende meteorite highly enriched in noble gases. Meteoritics and Planet. Sci., v. 34, p. 129-136 https://doi.org/10.1111/j.1945-5100.1999.tb01738.x
  23. Na, C. K., Lee, M. S., Lee, I. S., Park, H. Y. and Kim, O. B. (1997) Hydrochemical and isotopic properties of the thermal spring water from Chonju Jukrim district, Korea. Econ. Environ. Geol., v. 30, p. 25-33
  24. Nagao, K., Okazaki, R., Sawada, S. and Nakamura, N. (1999) Noble gases and K-Ar ages of five Rumuruti chondrites Yamato(Y)-75302, Y-791827, Y-793575, Y- 82002, and Asuka-881988. Antarct. Meteorite Res., v. 12, p. 81-93
  25. Nordstorm, D. K., Ball, J. W., Donahoe, R. J. and Whittemore, D. (1989). Groundwater chemistry and waterrock interactions at Stripa, Geochim. Cosmochim. Acta, v. 53, p. 1727-1740 https://doi.org/10.1016/0016-7037(89)90294-9
  26. Park, J. S., Sumino, H., Nagao, K., Jeong, C. H., Hur, S. D., Lee, J. I., Kim, K. H., Koh, Y. K. and Park, C. H. (2004) Noble gas geochemistry of hot spring waters and gases in Korean Peninsula. Proceedings of Annual Meeting Geol. Soc. Korea, p. 50-51
  27. Park, S. S. (2005) Hydrogeochemical studies on the origin and geochemical environments of thermal groundwaters in Bugok and Magumsan area, Southern Korea. PhD thesis, Korea University, 151p
  28. Park, S. S., Yun, S. T. Chae, G. T., Hutcheon, I., Koh, Y. K., So, C. S. and Choi, H. S. (2006) Temperature evaluation of the Bugok geothermal system, South Korea. Geothermics, v. 35, p. 448-469 https://doi.org/10.1016/j.geothermics.2006.07.002
  29. Shin, S. H. (2006) Hydrochemistry, stable isotope and helium gas isotope of hot spring waters in the Gyeonggi area. MS thesis, Daejeon University, 65p
  30. Shim, U. J. (1990) Petrological study on granitic bodies in the Seokmoto and southern part of the Kanghwado. MS thesis, Yonsei University. 221p
  31. Sung, K. Y., Park, M. E., Koh, Y. K. and Kim, C. S. (2001) Evolution and origin of the geothermal waters in the Busan area, Korea: I. Cooling and dilution by groundwater mixing after heated seawater-rock interaction. Econ. Environ. Geol., v. 34, p. 447-460
  32. Yun, S. T., Koh, Y. K., Kim, C. S. and So, C. S. (1998a) Geochemistry of geothermal waters in Korea: Environmental isotope and hydrochemical characteristics I. Bugok area. Econ. Environ. Geol., v. 31, p. 185-199
  33. Yun, S. T., Koh, Y. K. Choi, H. S., Youm, S. J. and So, C. S. (1998b) Geochemistry of geothermal waters in Korea: environmental isotope and hydrogeochemical characteristics. II. Jungwon and Munkyeong areas. Econ. Environ. Geol., v. 31, p. 201-213