DOI QR코드

DOI QR Code

A solar Cell Fiber using Semi-conductive Polymers

반도체형 고분자를 이용한 태양전지섬유

  • Song, Jun-Hyung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Joo-Yong (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 송준형 (숭실대학교 유기 신소재.파이버공학과) ;
  • 김주용 (숭실대학교 유기 신소재.파이버공학과)
  • Published : 2008.02.27

Abstract

Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

Keywords

References

  1. K. Inoue, R. Ulbricht, P. C. Madakasira, W. M. Sampson, S. Lee, J. Gutierrez, J. Ferraris, A. A. Zakhidov, Temperature and Time Dependence of Heat Treatment of RR-P3HT/PCBM Solar Cell, Synth. Met., 154, 41-44(2005) https://doi.org/10.1016/j.synthmet.2005.07.010
  2. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-based Titanium Oxide as an Optical Spacer, Adv. Mater., 18, 572-576(2006) https://doi.org/10.1002/adma.200501825
  3. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett., 39, 1098-1101(1977) https://doi.org/10.1103/PhysRevLett.39.1098
  4. S. E, Shaheen, C. J. Brabec, and N. S. Sariciftci, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett., 78(6), 841-843(2001) https://doi.org/10.1063/1.1345834
  5. P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D'Haen, P. Heremans, J. Poortmans, J. V.Manca, P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro -optical characteristics, Solar Energy Materials & Solar cells, 90, 2150(2006) https://doi.org/10.1016/j.solmat.2006.02.010
  6. G. Yu. J, Gao, J. C. Hummelen, and F. Wudl, A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions, J. Appl. Phys., 78, 4510(1995) https://doi.org/10.1063/1.359792
  7. S. E. Shaheen. D. S. Ginley, and G. E. Jabbour, Bulk Heterojunction Organic Photovoltaic Devices Using Dendrimers, MRS Bulletin, 30, 10(2005) https://doi.org/10.1557/mrs2005.2
  8. P. Peumans and S. R. Forrest, Very-high-efficiency double-hetero structure copper phthalocyanine/ C60 photovoltaic cells, Appl. Phys, Lett., 79, 126-128(2001) https://doi.org/10.1063/1.1384001
  9. S. W. Hur, H. S. Oh, Y. C. Oh, D. H. Chung, J. U. Lee, J. W. Park, and T. W. Kim, Organic Photovoltaic Effects Using CuPc and C60 Depending on Layer Thickness, Synth. Met., 154, 49-52(2005) https://doi.org/10.1016/j.synthmet.2005.07.020