Production Medium Optimization for Monascus Biomass Containing High Content of Monacolin-K by Using Soybean Flour Substrates

기능성 원료를 기질로 이용하는 Monacolin-K 고함유 모나스커스 균주의 생산배지 최적화

  • Lee, Sun-Kyu (Kyeongin Korea Food & Drug Administration) ;
  • Chun, Gie-Taek (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Jeong, Yong-Seob (Division of biotechnology, Chonbuk National University)
  • 이선규 (경인지방식품의약품안전청) ;
  • 전계택 (강원대학교 분자생명과학과) ;
  • 정용섭 (전북대학교 응용생물공학부)
  • Published : 2008.12.31

Abstract

During the last decade, monacolin-K biosynthesized by fermentation of red yeast rice (Monascus strains) was proved to have an efficient cholesterol lowering capability, leading to rapid increase in the market demand for the functional red yeast rice. In this study, the production medium composition and components were optimized on a shake flask scale for monacolin-K production by Monascus pilosus (KCCM 60160). The effect of three different soybean flours on the monacolin-K production were studied in order to replace the nitrogen sources of basic production medium (yeast extract, malt extract and beef extract). Among the several experiments, the production medium with dietary soybean flour to replace a half of yeast extract was very good for monacolin-K production. Plackett-Burman experimental design was used to determine the key factors which are critical to produce the biological products in the fermentation. According to the result of Plackett-Burman experimental design, a second order response surface design was applied using yeast extract, beef extract and $(NH_4)_2SO_4$ as factors. Applying this model, the optimum concentration of the three variables was obtained. The maximum monacolin-K production (369.6 mg/L) predicted by model agrees well with the experimental value (418 mg/L) obtained from the experimental verification at the optimal medium. The yield of monacolin-K was increased by 67% as compared to that obtained with basic production medium in shake flasks.

본 연구에서는 홍국균 (Monascus pilosus)을 이용하여 이차대사 산물인 monacolin-K를 대량생산하기 위하여 탄소원 또는 질소원으로 콩 분말을 기질로 하여 배지를 최적화하고자 하였다. 생산 배지에서 탄소원으로 콩 분말을 적용한 실험에서는 soluble starch 대신에 콩 분말을 전량 또는 50% 대체하였을 경우 전 실험구간에서 monacolin-K 생산량이 대조구의 50% 미만으로 생산되거나 전혀 생산되지 않았다. Soluble starch 대신에 sucrose를 사용한 실험의 경우 monacolin-K와 건조균체량은 각각 262 mg/L, 31.6 g/L로 대조구의 218 mg/L, 30.2 g/L보다 생산량이 증가하였다. 따라서 생산배지의 탄소원으로 sucrose를 변경하였다. 생산배지의 질소원으로 사용하는 yeast extract (15 g/L), malt extract (40 g/L), beef extract (30 g/L) 대신에 3종류의 콩 분말로 대체 실험을 한 결과, 대조구에서 monacolin-K는 262 mg/L를 생산되었고, yeast extract 50% 대신에 DSM 콩 분말을 사용한 실험구에서는 monacolin-K를 215 mg/L을 생산되어 가장 좋은 결과를 냈다. 따라서 생산배지에 yeast extract 50% 대신에 DSM 콩 분말을 적용하기로 하였다. Plackett-Burman Design 실험계획법에 의한 실험결과 monacolin-K의 생산에 영향을 미치는 인자는 yeast extract, beef extract, (NH4)2SO4 순으로 영향을 주는 것으로 나타났다. Monacolin-K 생산에 영향을 미치는 주요인자 3가지로 중심합성계획에 의한 반응표면분석을 수행한 결과 최적배지 조성은 sucrose 96 g/L, DSM 7.5 g/L, yeast extract 8.4 g/L, $(NH_4)_2SO_4$ 12.0 g/L, malt extract 40 g/L, beef extract 26.7 g/L, $Na_2HPO_4$ 0.5 g/L, L-Histidine 3.0 g/L, $KHSO_4$ 1.25 g/L 이고, monacolin-K 생산 예상량은 369.9 mg/L 이었다. 최적배지를 이용하여 홍국균을 $27^{\circ}C$, 200 rpm 조건에서 플라스크 배양 한 결과 monacolin-K 생산량과 건조균체량은 각각 418 mg/L, 27.1 g/L이었다. 결과적으로 monacolin-K 생산과 균체량의 감소 없이 콩 분말을 이용한 배지성분의 변화는 어느 정도 가능함을 알 수 있었다. 현재 알려진 고가의 질소원을 대체하기 위해서는 초기부터 균의 형태구조에 영향을 미치는 배지와 발효환경을 고려하여야 할 것으로 판단되었다.

Keywords

References

  1. Cha, Bae Cheon (1994), Comparison of Lipid Constituents in Soybean and Beanpaste, Kor. J. Pharmacogn. 25(4), 342-347
  2. Jong-Wook Kim, Young-Suk Kim, Pyeong-Hwa Jeong, Hyung-Eun Kim, and Dong-Hwa Shin (2006), Physicochemical Characteristics of Traditional Fermented Soybean Products Manufactured in Folk Villages of Sunchang Region, J. Fd. Hyg. Safety 21(4), 223-230
  3. Kim, Jung-Soo and Sun Yoon (1999), Isoflavone contents and ${\beta}$-Glucosidase activities of soybean, Meju, and Doenjang, Korean J. Food Sci. Technol. 31(6), 1405-1409
  4. Choi, Yeon Bae and Heon Soo Sohn (1998), Isoflavone content in Korean Fermented and Unfermented Soybean Foods, Korean J. Food Sci. Technol. 30(4), 745-780
  5. Hui, Y. H. (1992), Encyclopedia of Food Science and Technology 4, 2391. In Soybeans, A Wiley-Inter science Publication, New York
  6. Wang, H. J. and Murphy, P. A. (1994), Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, corp year, and location. J. Agric. Food Chem. 42, 1674-1677 https://doi.org/10.1021/jf00044a017
  7. Uzzan. M. and Labuza, T. P. (2004), Critical issues in R & D of soy isoflavone-enriched foods and dietary supplements. J. Food Sci. 69(3), 77-86 https://doi.org/10.1111/j.1365-2621.2004.tb13345.x
  8. Plactett, R. L. and Burman, J. P. (1946), The design of multifactorial experiments, Biometrika 33, 302-325
  9. Sung Whyoun Park (2001), Modern Experimental Design, pp521-571, Minyeongsa, Seoul
  10. Kysilka, R. and V. Kren (1993), Determination of Lovastatin (mevilolin) and mevinolinic acid in fermentation liquids, J. Chromatography 630, 414-417
  11. Sang-jin Yun (2004), Optimization of productiion medium and development of fermentation condition for Monascus pilosus production, M. S. Thesis, Dept. of Food Science & Technology, Chonbuk National University, Jeonju
  12. M. Pazouki and T. Panda (2000), Understanding the morphology of fungi, Bioengineering 22, 127-143
  13. Youn Jeung Cho, Hye Jin Hwang, Sang Woo Kim, Chi Hyun Song, and Jong Won Yun (2002), Effect of carbon source and aeration rate of broth rheology and fungal morphology during red pigment production by Paecilomyes sinclairii in a batch bioreactor, J. of Biotechnology 95, 13-23 https://doi.org/10.1016/S0168-1656(01)00445-X
  14. Young-Seob Jeong, Dong-Il Kim, Ik-whyan Kim, Jae-Gouan Lee, Gie-Keak Chun, Youn-Ho Jeong, Gyu-Hyun Cho, Jeong-Woo Choi, and Oc-Gi Hong (2001), Bioprocessing Engineering (theory and practice), pp230-265, World Science Co., Seoul
  15. Hee-Chan Lee and Byoung-Gi Kim (1997), Optimization of Bio-processing(II-1): Optimization of medium composition using the statistical method, The Korea Society for Microbiology and Biotechnology, Biological Industry 10(1), 10-14
  16. Wei-Young KIM, Myung-Gyou Sae, Chi-Whyun Song, Jong-Wyoun Wun, Gun-Buk Lee, and Hong-Gi Jeon (1999), Microbiology Engineering, pp192-204, Wunmundang, Seoul
  17. Jae-Gyu Ban (1997), Optimization of Bio-processing(II-II): Analysis on microbiological physiology and metabolism for fermentation optimization, The Korea Society for Microbiology and Biotechnology, Biological Industry 10(1), 15-22
  18. Stanbury, P. F., A. Whitaker, and S. J. Hall (1995), Principles of Fermentation Technology, 2nd ed., pp159-197, Pergamon Press, New York
  19. Yaw-Nan Chang, Jen-Chang Huang, Hhih-Chen Lee, Ing-Lung Shih, and Yew-Min Tzeng (2002), Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber, Enzyme and Microbial Technology 30(7), 889-894 https://doi.org/10.1016/S0141-0229(02)00037-6
  20. Nae-Gyoung Sung (1993), SAS explanation, The sixth volume, pp219-261, Free academy, Seoul