Bioethanol production from wood biomass hydrolysate with supercritical water treatment

초임계수 처리로 가수분해된 목질계 바이오매스를 이용한 바이오 에탄올 생산

  • Seo, Hyeon-Beom (Division of Food and Biotechnology, Chungju National University) ;
  • Han, Jae-Gun (College of Bioscience and Biotechnology, Kangwon National University) ;
  • Choi, Won-Seok (Division of Food and Biotechnology, Chungju National University) ;
  • Lee, Oh-Kyu (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Lee, Soo-Min (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Choi, Seok-Hwan (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Lee, Hyeon-Yong (College of Bioscience and Biotechnology, Kangwon National University) ;
  • Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
  • 서현범 (충주대학교 식품생명공학부) ;
  • 한재건 (강원대학교 BT특성화학부대학) ;
  • 최원석 (충주대학교 식품생명공학부) ;
  • 이오규 (국립산림과학원 화학미생물과) ;
  • 이수민 (국립산림과학원 화학미생물과) ;
  • 최석환 (국립산림과학원 화학미생물과) ;
  • 이현용 (강원대학교 BT특성화학부대학) ;
  • 정경환 (충주대학교 식품생명공학부)
  • Published : 2008.12.31

Abstract

We investigated the bioethanol production using wood biomass hydrolysate which obtained from the supercritical water (SCW) treatment. SCW-treated hydrolysate was used C-source of culture medium in shaking flask culture for bioethanol production. When the concentrated SCW-treated hydrolysate (SCW3) was used, yeast cell growth was slower compared with those in other SCW-treated hydrolysate (SCW1, SCW2). In addition, the bioethanol productions were 0.51 to 0.56 (%,w/v) when SCW1, SCW2, and SCW3 were used. Therefore, we removed the toxic phenolic compound in SCW-treated hydrolysate by pretreatments of activated charcoal and calcium hydroxide. Activated charcoal reduced more efficiently the phenolic compounds in SCW3 by 94.6%. Finally, when we pretreated SCW3 by activated charcoal and this was used for bioethanol production, 0.96 (%,w/v) bioethanol was produced and the ethanol yield based on reducing sugar reached 0.5.

초임계수 처리를 통하여 얻어진 목질계 바이오매스 가수분해 물을 이용한 바이오 에탄올 생산에 대하여 연구하였다. 초임계수 처리 가수분해물은 바이오에탄올 생산을 위한 배지의 탄소원으로 사용되었다. 농축된 초임계수 처리 가수분해물 (SCW3)을 사용하여 효모를 배양하였을 때, 다른 두 가지 초임계수 처리 가수분해물 (SCW1, SCW2) 을 사용한 경우에 비하여 효모의 성장속도가 늦었다. 그리고 모든 경우에 0.51에서 0.56 (%, w/v)의 바이오 에탄올이 생산되었다. 그래서 농축된 초임계수 처리 가수분해물 (SCW3)을 활성탄과 수산화 칼슘으로 전처리하여 페놀류 독성물질을 제거하였다. 활성탄 전처리가 보다 효과적으로 94.6%의 페놀류 화합물을 제거하였고, 바이오 에탄올도 0.96 (%, w/v) 생산 할 수 있게 하였고, 환원당을 기준으로 한 바이오에탄올 수율도 0.5에 이르렀다.

Keywords

References

  1. Sandburg, T. and K, Bernotat (2004), Potential for small-scale bio-fueled district heating and CHPs in Sweden in Bioenergy-Realizing the potential, S. Silveira, Eds., p113, Elsevise, Amsterdam
  2. Faaij, A. P. C. (2006), Bio-energy in Europe:Changing technology choices, Energy Policy, 34, 322-342 https://doi.org/10.1016/j.enpol.2004.03.026
  3. Ishikawa, T. and S. Saka (2001), Chemical conversion of cellulose as treated in supercritical methanol, Cellulose, 8, 189-195 https://doi.org/10.1023/A:1013170020469
  4. Miyafuji, H. and S, Saka (2007), Bioethanol production from lignocellulosics using supercritical water, ACS Sym. Ser. 954, 422-433
  5. Fang, Z., T, Sato, R. L. Smith Jr., H. Inomata, K. Arai, and J. A. Kozimski (2008), Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water, Bioresour. Technol. 99, 3424-3430 https://doi.org/10.1016/j.biortech.2007.08.008
  6. Gray, K. A., Zhao, L., and Emptage, M. (2006), Bioethanol. Curr. Opin. Chem. Biol. 10, 1-6 https://doi.org/10.1016/j.cbpa.2006.01.015
  7. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., and Zacchi, G. (1999), The generation of fermentation inhibitors during dilute acid hydrolysis of softwood, Enzyme Microb. Technol. 24, 151-159 https://doi.org/10.1016/S0141-0229(98)00101-X
  8. Carvalheiro, F., L. C. Duarte, S. Lopes, J. C. Parajo, H. Pereira, and F. M. Girio (2005), Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941, Process Biochem. 40, 1215-1223 https://doi.org/10.1016/j.procbio.2004.04.015
  9. Martinez, A., M. E. Rodriguez, S. W. York, J. F. Preston, and L. O. Ingram (2000), Effects of $Ca(OH)_2$ Treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates, Biotechnol. Bioeng. 69, 526-536 https://doi.org/10.1002/1097-0290(20000905)69:5<526::AID-BIT7>3.0.CO;2-E
  10. Choi, J.-W., H.-J. Lim, K.-S. Han, and D.-H. Choi (2006), Thermo-chemical conversion of poplar wood (Populus alba X glandulosa) to momoneric sugars by supercritical water treatment, Mokchae Konghak 34, 44-50
  11. Koo, B.-W., J.-W. Lee, J.-W. Choi, D.-H. Choi, and I.-G. Choi (2006), Supercritical water hydrolysis of waste logs after oak mushroom production, Mokchae Konghak 34, 81-95
  12. Chaplin, M. F. and J. F. Kennedy (1986), Carbohydrate analysis; A practical approach, p3, IRL Press, Oxford
  13. McDonald, S., P. D. Prenzler, M. Antolovich, and K. Robards (2001), Phenolic content and antioxidant activity of olive extracts, Food Chem. 73, 73-84 https://doi.org/10.1016/S0308-8146(00)00288-0
  14. Miyafuji, H., T. Nakata, K. Ehara, and S. Saka (2005), Fermentability of water-soluble portion to ethanol obtained by supercritical water treatment of lignocellulosics, Appl. Biochem. Biotechnol. 212-124, 963-971
  15. Nakata, T., H. Miyafuji, and S. Saka (2006), Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis, Appl. Biochem. Biotechnol. 129-132, 476-485