Enhanced production of monacolin-K through supplement of monacolin-K precursors into production medium and cloning of SAM synthetase gene (metK)

Precursor제공 및 생합성 관련 유전자의 cloning을 통한 Monacolin-K 생산성 향상

  • Lee, Mi-Jin (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Jeong, Yong-Seob (Division of Biotechnology, Chonbuk National University) ;
  • Chun, Gie-Taek (School of Bioscience and Biotechnology, Kangwon National University)
  • 이미진 (강원대학교 분자생명과학과) ;
  • 정용섭 (전북대학교 응용생물공학부) ;
  • 전계택 (강원대학교 분자생명과학과)
  • Published : 2008.12.31

Abstract

Monacolin-K is a strong anti-hypercholesterolemic agent produced by Monascus sp. via polyketide pathway. High-yielding mutants of monacolin-K were developed through rational screening strategies adopted based on understanding of monacolin-K biosynthetic pathway. Through the experiments for investigating various amino acids as putative precursors for the monacolin-K biosynthesis, it was found that production level of monacolin-K was remarkably increased when optimum amount of cysteine was supplemented into the production medium. We suggested that these phenomena might be related to the special roles of SAM (S-adenosyl methionine), a putative methyl group donor in the biosynthetic pathway of monacolin-K, demonstrating close interrelationship between SAM-synthesizing primary metabolism and monacolin-K synthesizing secondary metabolism. Namely, increase in the intracellular amount of SAM derived from the putative precursor, cysteine which was extracellularly supplemented into the production medium might contribute to the significant enhancement in the monacolin-K biosynthetic capability of the highly mutated producers. On the basis of these assumptions derived from the above fermentation results, we decided to construct efficient expression vectors harboring SAM synthetase gene (metK) cloned from A. nidulans, with the hope that increased intracellular level of SAM could lead to further enhancement in the monacolin-K production through overcoming a rate-limiting step associated with monacolin-K biosynthesis. Hence, in order to overcome the plausible rate-limiting step associated with monacolin-K biosynthesis by increasing intracellular level of SAM, we transformed the producer mutants with an efficient expression vector harboring gpdA promoter of the producer microorganism, and metK gene. Notably, from the resulting various transformants, we were able to screen a very high-yielding transformant which showed approximately 3.3 fold higher monacolin-K productivity than the parallel nontransformed mutants in shake flask cultures performed under the identical fermentation conditions.

Monacolin-K는 Monascus sp.로부터 polyketide pathway를 통해 생합성 되는 이차대사산물로써 강력한 콜레스테롤 저하제로 알려져 있다. 본 연구에서는 monacolin-K의 생합성 경로에 대한 이해에 근거한 지속적인 rational screening을 통해 monacolin-K의 생산성을 향상시킬 수 있었는데 그 중에서 특히 monacolin-K 생합성에 관련된 전구체를 최적화된 생산배지에 첨가함으로써 monacolin-K 생산성이 대조군에 비해 눈에 띠게 증가하는 결과를 확인하였다. 황의 동화작용에서 cysteine이 여러 단계를 거쳐 S-adenosylmethionine (SAM)으로 전환된다는 연구결과와 더불어, SAM은 다양한 세포내에서 주된 methyl donor 역할을 하므로 monacolin-K 구조에 포함되어있는 많은 methyl기 역시 SAM으로부터 유래한다고 알려져 있다. 따라서 첨가한 cysteine이 SAM을 생합성하는데 이용된 것으로 보고 SAM을 생산균주 내에서 고농도로 생산한다면 monacolin-K 생산성이 증가할 것이라 기대하였다. 따라서 여러 균주에서 보고된 SAM synthetase 유전자를 cloning하여 생산균주 내로 도입함으로써 생산균주가 cysteine의 별도첨가 없이도 세포내에서 SAM을 고농도로 생산하도록 하여 monacolin-K의 생산성 향상을 꾀하고자 하였다. 이를 위해 염기서열이 밝혀진 균사형성 곰팡이인 Aspergillus nidulans로부터 SAM synthetase를 암호화하는 metK 유전자를 cloning하고 Monascus 유래의 gpdA promoter에 의해 발현되도록 하는 재조합 발현벡터 pBMmetK를 제작하였고 이를 생산균주 내로 도입하여 형질전환체와 대조군의 monacolin-K 생산성을 확인한 결과, 대조군에 비해 형질전환체에서 Monacolin-K 생산성이 약 3.3배가량 증가한 것을 관찰하였다. 이는 metK 유전자가 생산균주의 DNA 내로 삽입되어 안정적으로 발현됨으로써 세포내에서 많은 methyl 기를 제공함으로써 monacolin-K 생산성이 향상된 것으로 판단되며, 현재는 분자적 수준에서 이러한 형질전환체 내에서 metK 유전자의 발현 정도를 확인하는 중이다.

Keywords

References

  1. Endo A. (1979), Monacolin-K, a new hypocholesterolemic agent produced by Monascus species, J. Antibiot. 32, 852-854 https://doi.org/10.7164/antibiotics.32.852
  2. Endo, A. (1980), Monacolin-K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Antibiot. 33, 334-336 https://doi.org/10.7164/antibiotics.33.334
  3. Endo, A. (1985), Compactin (ML-236B) and related compound as potential cholesterol-lowering agents that inhibit HMG-CoA reductase, J. Med. Chem, 28, 401-405 https://doi.org/10.1021/jm00382a001
  4. Alberts, A. W., J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, S. Currie, E. Stapley, G. Albers-Schonberg, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer (1980), Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl- coenzyme A reductase and a cholesterol-lowering agent, Proc. Natl. Acad. Sci. USA 77, 3957-3961
  5. Drew S. W. and A. L. Demain (1977), Effect of primary metabolites on secondary metabolism. Annu. Rev. Microbiol, 31, 343-356 https://doi.org/10.1146/annurev.mi.31.100177.002015
  6. Moyer A. J. and R. D. Coghill (1947), The effect of phenylacetic acid on penicillin production, J. Bacteriol. 53, 329-341
  7. Krupinski V. M., J. E. Robbers, and H. G. Floss (1976), Physiological study of ergot: induction of alkaloid synthesis by tryptophan at the enzymatic level, J. Bacteriol, 125, 158-165
  8. Haavik H. I. and F. Froyshov (1982), In Peptide Antibiotics- Biosynthesis and Functions, H. Kleinkauf and H. von Doren, editors, pp155-159, Walter de Gruyter, Berlin/NY
  9. Eiki H., I. Kishi, T. Gomi, and M. Ogawa (1992), In Harnessing Biotechnology for the 21st Century, M.R. Ladisch, and A. Bose, editors, pp223-227, American Chemical Society, Washington
  10. Kobel H. and R. Traber (1982), Directed biosynthesis of Cyclosporins, Eur. J. Appl. Microbiol. Biotechnol. 14, 237-240 https://doi.org/10.1007/BF00498470
  11. Boeck L. D., F. D. Mertz, R. K. Wolter and C. E. Higgens (1984), N-demethylvancomycin, a novel antibiotic produced by a strain of Nocardia orientalis, J. Antibiot. 37, 446-453 https://doi.org/10.7164/antibiotics.37.446
  12. Vining L. C. (1970), Effect of tryptophan on alkaloid biosynthesis in cultures of a Claviceps species, Can. J. Microbiol. 16, 473-480 https://doi.org/10.1139/m70-080
  13. Aharonowitz Y. (1986), In Regulation of Secondary Metabolite Formation, Workshop Conferences Hoechst vol. 16, H. Kleinkauf, H. von. Doren, H. Dornauer, and G. Nesemann, editors, pp89-101, VCH Verlagsgesellschaft, Weinheim-Deerfield Beach, Florida-Basel
  14. Elander R. P. (1989), In Fermentation Process Development of Industrial Organisms, J. O. Neway, editor, pp169-220, Marcel Dekker, New York
  15. Martin J. F., T. D. Ingolia and S. W. Queener (1990), In Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, S. A. Leong and R. M. Berka, editors, pp149-196, Marcel Dekker, New York
  16. Friedrich, J., M. Zuzek, M. Bencina, A. Cimerman, A. Strancar, I. Radez (1995), High-performance liquid chromatographic analysis of mevinolin and mevinolinic acid in fermentation broths, J. Chromatography 704, 363-367 https://doi.org/10.1016/0021-9673(95)00096-6
  17. Lu S. C. (2000), S-adenosylmethionine. Int. J. Biochem. Cell Biol. 32, 391-395 https://doi.org/10.1016/S1357-2725(99)00139-9
  18. GroBmann K., K. Herbster and M. Mack (2000), Rapid cloning of metK encoding methionine adenosyltransferase from Corynebacterium glutamicus by screening a genomic library on a high density colony-array, FEMS Microbiol. Lett. 193, 99-103 https://doi.org/10.1111/j.1574-6968.2000.tb09409.x
  19. Hansen J. and P. F. Johannesen (2000), Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae, Mol. Gen. Genet 263, 535-542 https://doi.org/10.1007/s004380051199
  20. Schiesle R. H. and T. D. Peters (1991), Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88, 7585-7589
  21. Xu J., M. H. Mo, X. W. Huang, and K. Q. Zhang (2005), Improvement on genetic transformation in the nematode-trapping fungus Arthrobotrys oligospora and its quantification on dung samples. Mycopathologia 159, 533-538 https://doi.org/10.1007/s11046-005-4334-2