Cultivation of Sprout by Highly Concentrated Oxygen Water Soaking

고농도 산소수 침지를 통한 새싹 재배

  • Cha, Jin-Myeong (B&E Tech Co., Ltd.) ;
  • Hong, Seung-Ho (B&E Tech Co., Ltd.) ;
  • Kim, Sun-Yil (B&E Tech Co., Ltd.) ;
  • Park, Ju-Young (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Kim, Maeng-Su (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Lee, In-Hwa (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University)
  • 차진명 (비앤이테크(주)) ;
  • 홍승호 (비앤이테크(주)) ;
  • 김선일 (비앤이테크(주)) ;
  • 박주영 (조선대학교 환경공학부 BK21 바이오가스기반 수소생산 전문인력양성팀) ;
  • 김맹수 (조선대학교 환경공학부 BK21 바이오가스기반 수소생산 전문인력양성팀) ;
  • 이인화 (조선대학교 환경공학부 BK21 바이오가스기반 수소생산 전문인력양성팀)
  • Published : 2008.12.31

Abstract

In order to compare the germination and growth rate of the sprouts soaked in highly concentrated oxygen water, it with specific amounts of oxygen dissolved was produced in a high pressure reactor by pressuring oxygen. The sprouts were observed after being soaked in $20^{\circ}C$ oxygen water with 20, 30, 40, 50 ppm of oxygen dissolved each. Results of ten days later indicate that the final germination rate of the sprout soaked in 50 ppm oxygen water was $24.6{\sim}28.6%$ higher than that of the sprout soaked in distilled water. The final growth length also measured 6-7 mm higher than the sprout soaked in distilled water, demonstrating that enough supply of oxygen to the sprout induces stability and efficiency in its growth.

고농도 산소수를 이용한 새싹 침지로 인한 발아율 및 성장률을 비교하기 위하여 특정 용존산소량의 산소수를 고압 반응기에서 산소를 통한 가압을 통해 생성하였고, 용존산소량을 20, 30, 40, 50 ppm으로 조절한 산소수로 온도 $20^{\circ}C$에서 새싹을 4시간 동안 침지한 후 새싹을 관찰하였다. 그 결과 새싹의 10일째 최종적인 발아율은 일반 증류수 침지 시에 비해 50 ppm 산소수 침지시 최종발아율은 $24.6{\sim}28.6%$ 높게 나타났고, 최종 성장 길이도 $6{\sim}7\;mm$ 정도 높은 값을 나타내어, 새싹의 성장에서 씨앗의 충분한 산소 공급에 의한 발아가 안정적이고 효율적인 성장을 유도함을 알 수 있었다.

Keywords

References

  1. Zhang, Y., Talalay, P., Cho, C. G., and Posner, G. H. (1992), A major inducer of anticarcinoogenic protective enzymes from broccoli:Isolation and elucidation of structure. Proc Natl Acad Sci USA 89, 2399-2403
  2. Talalay, P., Fahey, J. W., holtzclaw, W. D., Prestera, T., and Zhang Y. (1995), Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett 82/83, 173-179 https://doi.org/10.1016/0378-4274(95)03553-2
  3. Kim, M. R., Lee, K. J., Kim, J. H., and Sok, D. E. (1997), Determination of sulforaphane in cruciferous vegetables by SIM. Korean J Food Sci Technol 29, 882-887
  4. Kim, M. R., Lee, K. J., Kim, Y. B., and Sok, D. E. (1997), Induction of hepatic glutathions S-transferase activity in mice administered with various vegetable extracts. J Food Sci Nutr 2, 207-213
  5. Jong, H. K. and J. R. Botella (2002), Callus Induction and Plant Regeneration from Broccoli for Transformation. J Plant Biology. 45(3), 177-181 https://doi.org/10.1007/BF03030311
  6. Lee, S. M., Rhee, S. H., and Park, K. Y. (1997), Antimutagenic Effect of Various Cruciferous Vegetables in Salmonella Assaying system. J. Fd Hyg. Safety 12, 312-327
  7. Cuvelier, M. E., Richard, H. and Berset, C. (1992), Biosci. Biotech. Biochem. 56, 324-325 https://doi.org/10.1271/bbb.56.324
  8. Kim, H. S. and Chung, S. Y. (1992), Effects of feeding the mixed oils of butter, sardine and safflower on the lipid components in serum and activities of hepatic functional enzymes in rats. J. korean Soc. Food Nutr. 21, 608