Biological production of 1,3-propanediol using crude glycerol derived from biodiesel process

바이오디젤 부산물인 폐글리세롤을 이용한 생물학적 1,3-propanediol 생산

  • Jun, Sun-Ae (Korea Institute of Science and Technology, Center for Environmental Technology Research) ;
  • Kang, Cheol-Hee (Korea Institute of Science and Technology, Center for Environmental Technology Research) ;
  • Kong, Sean-W. (INWOO Corporation) ;
  • Sang, Byoung-In (Korea Institute of Science and Technology, Center for Environmental Technology Research) ;
  • Um, Young-Soon (Korea Institute of Science and Technology, Center for Environmental Technology Research)
  • 전선애 (한국과학기술연구원 환경기술연구단) ;
  • 강철희 (한국과학기술연구원 환경기술연구단) ;
  • 공성욱 ((주)인우코퍼레이션) ;
  • 상병인 (한국과학기술연구원 환경기술연구단) ;
  • 엄영순 (한국과학기술연구원 환경기술연구단)
  • Published : 2008.10.31

Abstract

The production of 1,3.propanediol (1,3-PD) was investigated with Klebsiella pneumoniae DSM2026 and K. pneumoniae DSM4799 using crude glycerol obtained from biodiesel industry. Crude glycerol was used without prior purification to investigate effects of impurities in crude glycerol on 1,3-PD production. In the batch cultures, 1,3-PD production with crude glycerol was $1.1{\sim}2.5$ times higher than that with pure glycerol, indicating that crude glycerol is even a better substrate than pure glycerol for 1,3-PD fermentation. When glucose was added, 1,3-PD production and yield decreased in spite of enhanced cell growth. Furthermore, the addition of glucose was found to increase 2,3-butanediol, a by-product, significantly because of the change in metabolism in the presence of glucose. In semi-batch cultures without glucose addition, 26 g/L 1,3-PD was produced with crude glycerol, which was $2{\sim}3$ times higher than that with pure glycerol. Based on our results, it was clearly shown that crude glycerol is an effective substrate for biological 1,3-PD production, making it more feasible to produce 1,3-PD at a lower price.

본 연구에서는 통성 혐기성 세균인 K. pneumoniae DSM2026 K. pneumoniae DSM4799를 이용하여 국내 바이오디젤 생산공정에서 발생된 폐글리세롤로부터 1,3-PD을 생산하고자 하였다. 폐글리세롤은 전처리 없이 이용하여 폐글리세롤에 포함되어 있는 불순물의 영향을 알아보았다. 실험 결과, 회분식 발효에서 폐글리세롤을 사용한 경우 순수 글리세롤에 비해 $1.1{\sim}2.5$배 향상된 1,3-PD 증가량을 나타내었으며, 이를 통해 바이오디젤 부산물인 폐글리세롤은 순수 글리세롤보다 효과적인 1,3-PD 생산 기질로의 사용가능성을 확인하였다. 배양액에서 글루코스 첨가 유무에 따른 1,3-PD의 생성 변화를 살펴본 결과, 글루코스에 의해 미생물의 성장이 30% 증가된 반면, 1,3-PD의 생산량은 글루코스가 첨가되지 않은 배양액에서 $1.3{\sim}2.9$배 정도 증가되었다. 또한 1,3-PD 발효 부산물인 2,3-BD 생산량은 글루코스 첨가시 $6{\sim}9\;g/L$까지 증가하는 경향을 보였다. 반회분식 배양에서는 글루코스 미첨가시 폐글리세롤로부터 26 g/L의 1,3-PD가 생성되었으며, 이는 순수글리세롤 사용했을 경우에 비해 $2{\sim}3$배 높은 생성량이었다. 본 연구를 통해, 전처리 과정을 거치지 않은 바이오디젤 부산물인 폐글리세롤이 효과적으로 1,3-PD 생산에 이용될 수 있음을 알 수 있으며, 이를 통해 보다 가격경쟁력이 있는 생물학적 1,3-PD 생산이 가능할 것으로 기대된다.

Keywords

References

  1. Lee, Sun-Gu and Sunghoon Park (2006), Industrial biotechnology : Bioconversion of biomass to fuel, chemical feedstock and polymers, Korean Chem. Eng. Res. 44(1), 23-34
  2. Ministry of Commerce, Industry and Energy (2005), Industrial Biotech-nology : Current Status and National Policy for its Promotion
  3. Kim, Seung-Hwan, Se-Jeong Kim, Kun-Gyu Park, Sang-Ki Rhee, and Chul-Ho Kim (2002), 1,3-Propanediol fermentation using the by-proudcts from fat industry, Korea J. Biotechnol. Bioeng. 17(3), 255-260
  4. Wilke, T. and Vorlop, K. D. (2004), Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66(2), 131-142 https://doi.org/10.1007/s00253-004-1733-0
  5. Zheng, A. P. and Biebl, H. (2002), Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. 74, 239-259
  6. Elm, R., Falbe, J., Hahn, H. D., and Gelbke, H. P. (1980), Propandiol. In: Ullmanns Encyklopadie der Technischen Chemie, vol. 19., Bartholomé, E., Biekert, E., Hellmann, H., Ley, H., Weigert, H., Weise, E. (Eds.), Verlag Chemie, Weinheim, Germany
  7. Besson, M., Gallezot, P., Pigamo. A., and Reifsnyder, S. (2003), Development of an improved continuous hydrogenation process for the production of 1,3-propanediol using titania supported ruthenium catalysts. Appl. Catal. A. 250, 117-124 https://doi.org/10.1016/S0926-860X(03)00233-3
  8. Knifton, J. F., James, T. G., Slaugh. L, H,, Allen, K. D., Weider, P. R., and Powell, J. B. (2004), One-step production of 1,3-propanediol from ethylene oxide and syngas with a cobalt-iron catalyst. US Patent 6750373
  9. Chaminand, J., Djakovitch, L. A., Gallezot, P., Marion, P., Pinel, C., and Rosier, C. (2004), Glycerol hydrogenolysis on heterogeneous catalysts, Green. Chem. 6(88), 359-361 https://doi.org/10.1039/b407378a
  10. Wang, K., Hawley, M. C., and Deathos, S. J. (2003), Conversion of Glycerol to 1,3-Propanediol via Selective Dehydroxylation, Ind. Eng. Chem. Res. 42, 2913-2923 https://doi.org/10.1021/ie020754h
  11. Laffend, L. A., V. Nagarajan, and C. E. Nakamura (1996), Bioconversion of a fermentable carbon source to 1,3-propanediol by single microorganism. WO 9635796 to E.I Du Pont de Nemours and Genencor International
  12. Xiu, Z. L., B. H. Song., Z. T. Wang, L. H. Sun, E. M. Feng, and A. P. Zeng (2004), Optimization of biodissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one-stage and two-stage anaerobic cultures, Biochem. Eng. J. 19, 189-197 https://doi.org/10.1016/j.bej.2003.12.005
  13. Nemeth A., Kupcsulik B., and Sevella B. (2003), 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J. Microbiol. Biotechnol. 19, 659-663 https://doi.org/10.1023/A:1025116308484
  14. Ying Mu, Hu Teng, Dai-Jia Zhang, Wei Wang, and Zhi-Long Xiu (2006), Microbiol production of 1,3-propanediol by Klebsiella pneumonia using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28, 1755-1759 https://doi.org/10.1007/s10529-006-9154-z
  15. Cheng, K-K., Ling, H., Zhang, L., Sun, Y., and Liu, D. (2004), Effect of glucose as cosubstrate on 1,3-propanediol fermentation by Klebsiella pneumoniae, Guocheng. Gongcheng. Xuebao. 4(6), 561-566
  16. Zhang, J., Zhao, H. Y., Liu H., Xiang, B., and Liu, D. (2002), Fermenting production of 1,3-propanediol by using glucose as cosubstrate. Modern Chem. Industry 22, 32-35
  17. Rush, F. E. and Lin, E. C. C. (1975), Independent constitutive expression of the aerobic and anaerobic pathway of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 124, 348-352
  18. Abbad-Andaloussi, S., Guedon, E., Spiesser, E., and Petitdemange, H. (1996), Glycerol dehydratase activity : the limiting step for 1,3-propanediol production by Clostridium butyricum DSM5431. Lett. Appl. Microbiol. 22, 311-314 https://doi.org/10.1111/j.1472-765X.1996.tb01168.x
  19. Abbad-Andaloussi, Samine, J., Gerard, P., and Petitdemange, H. (1998), Effect of glucose on glycerol metabolism by Clostridium butyricum DSM5431, J. Appl. Microbiol. 84, 515-522 https://doi.org/10.1046/j.1365-2672.1998.00374.x
  20. Syu, M.-J. (2001), Biological production of 2,3-butanediol, Appl. Microbiol. Biotechnol. 55, 10-18 https://doi.org/10.1007/s002530000486
  21. Biebl, H., Zeng, A.-P., Menzl, K., and Deckwer, W.-D. (1998), Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae, Appl. Microbiol. Biotechnol. 50, 24-29 https://doi.org/10.1007/s002530051251
  22. Huang, He., Gong, C. S., and Tsao, G. T., (2002), Production of 1,3-Propanediol by Klebsiella pneumoniae, Appl. Biochemi. Biotechnol. 98-100, 687-698 https://doi.org/10.1385/ABAB:98-100:1-9:687