Inhibitory Activity on the Diabetes Related Enzymes of Tetragonia tetragonioides

번행초 추출물의 당뇨관련 효소에 관한 저해 활성

  • 최혜정 (창원대학교 대학원 생명공학협동과정) ;
  • 강점순 (부산대학교 생명자원과학부) ;
  • 최영환 (부산대학교 생명자원과학부) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 주우홍 (창원대학교 생물학과)
  • Published : 2008.10.31

Abstract

In this study, we examined the anti-diabetic activity in vitro by the crude extracts of Tetragonia tetragonioides which has been known to superior plants for the traditional prevention and treatment of stomach-related diseases. $\alpha$-Amylase and $\alpha$-glucosidase, the principal enzymes involved in the metabolism of carbohydrates, and aldose reductase, the key enzyme of the polyol pathway, have been shown to play the important roles in the complications associated with diabetes. A hexane (HX) fraction of T. tetragonioides were shown to inhibit more than 50% of salivary and pancreatin $\alpha$-amylase activity at concentration of 2.882 mg/mL and 2.043 mg/mL, respectively. In addition, the HX and ethylacetate (EA) fraction showed the highest inhibitory activity on yeast $\alpha$-glucosidase at values of $IC_{50}$ of 0.723 mg/mL and 1.356 mg/mL respectively. The HX, dichloromethane (DCM) and EA fraction showed more higher inhibitory activity on yeast $\alpha$-glucosidase than commercial agent such as 1-deoxynorjirimycin and acarbose. Also, the aldose reductase from human muscle cell had been inhibited strongly by the DCM fraction and HX fraction at 51.95% and 47.22% at a concentration of 1 mg/mL, respectively. Our study, for the first time, revealed the anti-diabetic potential of T. tetragonioides and this study could be used to develop medicinal preparations or nutraceutical and functional foods for diabetes and related symptoms.

본 연구에서 당뇨병의 예방, 치료제 및 건강기능 식품으로서 산업적 활용가능성을 평가하기 위한 기초연구로서 번행초 추출물을 사용하여 당뇨관련 효소인 $\alpha$-amylase, $\alpha$-glucosidase, $\beta$-glucosidase 그리고 aldose reductase에 대한 저해활성을 조사하였다. 번행초의 HX 분획물은 인간 타액, 돼지 췌장 $\alpha$-amylase에 대해 5 mg/mL 농도에서 각각 62.23%, 88.74%로 높은 저해효과를 나타냈으며, $\alpha$-glucosidase에 대해서도 HX 분획물이 1 mg/mL 농도에서 60.27%로 높은 저해효과를 나타냄으로써 현재 혈당강하제로 사용되고 있는 acarbose와 1-deoxynorjirimycin보다 높은 억제 효과를 보였다. 그리고 만성 합병증에 의한 시력장애, 신경성장애, 신장기능장애, 심장기능 장애 등의 심각한 당뇨병성 합병증 유발과 관련이 있는 aldose reductase에 대한 억제활성을 조사한 결과, 1 mg/mL 농도에서 번행초 DCM 분획과 HX 분획물이 각각 51.95%, 47.22%로 높은 저해활성을 나타냄으로써 당뇨병과 그로 인한 합병증의 예방에도 효과가 있는 것으로 판단된다. 전 세계적으로 당뇨병 환자가 증가추세에 있어 당뇨병 치료제의 시장 규모는 더욱 확대될 가능성이 높은 가운데 지금까지 보고되지 않은 번행초의 항당뇨 효능의 우수성을 검증함으로써 바이오산업육성뿐만 아니라 신소득 작물로 순화재배를 통한 농가소득 향상에도 기여할 것으로 기대된다.

Keywords

References

  1. Wattenberg, L. W (1983), Inhibition of neoplasia by minor dietary constitutents, Cancer Res. 43, 2448-2453
  2. Abrams, J., H. Ginsberg, and S. M. Grundy (1982), Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus, Diabetes 31, 903-910 https://doi.org/10.2337/diabetes.31.10.903
  3. Choi, J. S., H. Y. Chung, and S. Y. Han (1990), A preliminary study on hypercholesterolemic and hyperglycemic activities of some medical plants, Korean J. Pharm. 21, 153-157
  4. Bantle, J. P., J. W. Rosett, A. L. Albrigh, C. M. Apovian, N. G. Clark, M. J. Frans, B. J. Hoogwerf, A. H. Lichtensterin, E. M. Davis, A. D. Mooradian, and M. L. Wheeler (2000), Nutrition recommendation and principles for people with diabetes mellitus (Position Statement), Diabetes Care 23, 843-846
  5. Stratton, I. M., A. I. Adler, H. A. Neil, D. R. Matthews, S. E. Manley, C. A. Cull, D. Hadden, R. C. Turner, and R. R. Holman (2000), Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35), prospective observational study, Brit. Med. J. 321, 405-412 https://doi.org/10.1136/bmj.321.7258.405
  6. Tovar, J. M., O. V. Bazaldua, and R. S. Poursani (2007), LDL levels in diabetes: how low should they go, J. Fam. Pract. 56, 634-640
  7. Choi, H. J., Y. K. Jeong, D, O. Kang, and W. H. Joo (2008), Inhibitory effect of four solvent fractions of Alnus firma on ${\alpha}$-amylase and ${\alpha}$-glucosidase, J. Life Sci. 18(7), 1005-1010 https://doi.org/10.5352/JLS.2008.18.7.1005
  8. Shan, J. J., M. Yang, and J. W. Ren (2006), Anti-diabetic and hypolipidemic effects of aqueous extract from the flower of Inula japonica in alloxan-induced diabetic mice, Biol. Pharm. Bull. 29(3), 455-459 https://doi.org/10.1248/bpb.29.455
  9. Lim, S. J., S. Y. Kim, and J. W. Lee (1995), The effects of korean wild vegetables on blood glucose level and liver-muscle metabolism of streptozotocin-induced diabetic rats, Korean J. Nutr. 28, 585-594
  10. Schmidit D. D., W. Frommer, B. Junge, L. Muller, W. Wingender, E. Truscheit, and D. Schafer (1977), alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin, Naturwissenschaften 64, 535-536 https://doi.org/10.1007/BF00483561
  11. Saito, N., H. Sakai, H. Sekihara, and Y. Yajima (1998), Effect of an ${\alpha}$-glucosidase inhibitor (voglibose), in combination with sulphonilureas, on glycaemic control in type 2 diabetes patients, J. Int. Med. Res. 26, 219-232 https://doi.org/10.1177/030006059802600501
  12. Andrade-Cetto, A., H. Wiedenfeld, M. C. Revilla, and I. A. Sergio (2000), Hypoglycemic effect of Equisetum myriochaetum aerial parts on streptozotocin diabetic rats, J. Ethnopharmacol. 72, 129-133 https://doi.org/10.1016/S0378-8741(00)00218-X
  13. Hyuncheol, O. H., D. H. Kim, J. H. Cho, and Y. C. Kim (2004), Hepato-protective and free radical scavendging activityes of phenilics petrosins and flavonoids isolated from Equisetum arvense, J. Ethnopharmacol. 95, 421-424 https://doi.org/10.1016/j.jep.2004.08.015
  14. Samulitis, B. K., T. Goda, S. M. Lee, and O. Koldovsky (1987), Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrates in rat small intestine, Drugs Exp. Clin. Res. 13, 517-524
  15. Dvornik, D. (1987), Aldose Reductase Inhibitior, In Aldose Reductase Inhibition, D. Porter Ed.; An Approach to the Prevention of Diabetic complications 1987, New York. pp221-323
  16. Aoki, T., Takagi, K. Hira, T., and Suga, T. (1982), Two naturally occurring acyclic diterpene and norditerpene aldhydes from Tetragonia tetragonioides, Phytochem. 21(6), 1361-1363 https://doi.org/10.1016/0031-9422(82)80142-8
  17. Kato. M., T. Takeda, Y. Ogihara, M. M. Shimizu, T. Nomura, and Tomita, T. (1985), Syudies on the structure of polysaccharide from Tetragonia tetragonoides, I. Chem. Pharm. Bull. 33(9), 3675-3680 https://doi.org/10.1248/cpb.33.3675
  18. Mori, K. and Kinsho, T. (1988), Synthesis of anti-ulcergenic cerebroside isolated Tetragonia tetragonioides, Liebigs Ann. Chem. 8, 807-814
  19. Emi, O. and Y. Mikio (1983), The principles of Tetragonia tetragonioides having anti-ulcergenic activity. Isolation and identification of a sterol glucoside mixture (compound A). Yakuguku zasshi. 103(1), 43-48 https://doi.org/10.1248/yakushi1947.103.1_43
  20. Lee, M. A., H. J. Choi, J. S. Kang, Y. W. Choi, and W. H. Joo (2008), Antioxidant Activities of the solvent extracts from Tetragonia tetragonoides, J. Life Sci. 18(2), 220-227 https://doi.org/10.5352/JLS.2008.18.2.220
  21. Houghton, P. J. and A. Soumyanath (2006), ${\alpha}$-Amylase inhibitory activity of some Malaysian plants used to treat diabetes with particular reference to Phyllanthus amarus, J. Ethnopharmacol. 107, 449-455 https://doi.org/10.1016/j.jep.2006.04.004
  22. Adisakwattana, S., K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, S. Deesamer, and S. Yibchok-anun (2004), Structure-activity relationships of trans-cinnamic acid derivatives on ${\alpha}$-glucosidase inhibition, Bioorg. Med. Chem. Lett. 14, 2893-2896 https://doi.org/10.1016/j.bmcl.2004.03.037
  23. Fujita, T., T. Funako, and H. Hayashi (2004), 8-Hydroxydaidzein, and aldose reductase inhibitor from Okara fermented with Aspergillus sp. HK-388, Biosci. Biotechnol. Biochem. 68(7), 1588-1590 https://doi.org/10.1271/bbb.68.1588
  24. Fischer, P. B., G. B. Karlsson, R. A Dwek, and F. M. Platt (1996), N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired gp120 shedding and gp41 exposure, J. Virol. 70, 7153-7160
  25. Puls, W. and U. Keup (1973), Influence of an ${\alpha}$-amylase inhibitor on blood glucose, serum insulin and NEEF in starch loading tests in rats, dogs and man, Diabetologia. 9, 97-101 https://doi.org/10.1007/BF01230687
  26. Gowri, P. M., A. K. Tiwari, A. Z. Ali, and J. M. Rao (2007), Inhibition of ${\alpha}$-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds, Phytother. Res. 21, 796-799 https://doi.org/10.1002/ptr.2176
  27. Conforti, F., M. R. Loizzo, G. A. Statti, and F. Menichini (2005), Comparative Radical Scavenging and Antidiabetic Activities of Methanolic Extract and Fractions from Achillea ligustica ALL, Biol. Pharm. Bull. 28(9), 1791-1794 https://doi.org/10.1248/bpb.28.1791
  28. Gua, J., Y. S. Jin, W. Han, T. H. Shin, J. H. Sa, and M. H. Wang (2006), Studies for component analysis, antioxidative activity and ${\alpha}$-glucosidase inhibitory activity from Equisetum arvense, J. Korean Soc. Appl. Biol. Chem. 49(1), 77-81
  29. Lee, S. L., Y. C. Park, and J. B. Kim (2007), Effects of Hambag Mushroom (Grifola Frondosa)-Powder on Hyperglycemia and Hyperlipemia in STZ and High Fat Diet-induced Diavetic Rats, J. Life. Sci. 17, 1387-1393 https://doi.org/10.5352/JLS.2007.17.10.1387
  30. Rhinegart, B. L., K. M. Robinson, P. S. Liu, A. J. Payne, M. E. Wheatley, and S. R. Wanger (1987), Inhibition of intestinal disaccharidase and suppression of blood glucose by a new ${\alpha}$-glucohydrolase inhibitor-MDL 25,637, J. Pham. Exp. Ther. 241, 915-920