DOI QR코드

DOI QR Code

Threshold Current Reduction of GaAs/AlGaAs Quantum Cascade Laser due to the Deep Mesa Structure

GaAs/AlGaAs Quantum Cascade Laser에서 Deep Mesa 구조에 의한 문턱전류 감소

  • Han, Il-Ki (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Song, Jin-Dong (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jung-Il (Nano Device Research Center, Korea Institute of Science and Technology)
  • 한일기 (한국과학기술연구원 나노소자연구센터) ;
  • 송진동 (한국과학기술연구원 나노소자연구센터) ;
  • 이정일 (한국과학기술연구원 나노소자연구센터)
  • Published : 2008.11.30

Abstract

GaAs/AlGaAs based quantum cascade lasers were fabricated with two different types of i) the shallow mesa type which was etched up to above active region and ii) the deep mesa type which was etched through active region. While the threshold current density of shallow mesa type was $26-32\;kA/cm^2$, the one of deep mesa type was reduced drastically up to $13\;kA/cm^2$. Such lowered threshold current density at deep mesa type attributed to the reduction of current loss to the lateral directions.

GaAs/AlGaAs 물질계를 기반으로 한 양자폭포레이저를 제작하였다. 양자폭포레이저는 활성층의 위까지만 식각된 shallow mesa 구조와 활성층까지 식각된 deep mesa 구조로 제작되었다. shallow mesa 구조의 경우 문턱전류 밀도가 $26-32\;kA/cm^2$이었지만 deep mesa 구조의 경우 문턱전류 밀도는 $13\;kA/cm^2$로 대단히 감소되었다. Deep mesa 구조에서의 문턱전류 감소는 측면 방향으로의 전류 손실이 감소되었기 때문으로 설명되었다.

Keywords

References

  1. N. Suzuki and N. Iizuka, Jpn. J. Appl. Phys. 36, L1006 (1997) https://doi.org/10.1143/JJAP.36.1006
  2. C. Gmachl, H. M. Ng, and A. Y. Cho, Appl. Phys. Lett. 77, 334 (2000) https://doi.org/10.1063/1.126968
  3. K. Kishino, A. Kikuchi, H. Kanazawa, and T. Tachibana, Appl. Phys. Lett. 81, 1234 (2002) https://doi.org/10.1063/1.1500432
  4. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, Appl. Phys. Lett. 81, 1381 (2002) https://doi.org/10.1063/1.1498861
  5. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, Appl. Phys. Lett. 82, 3165 (2003) https://doi.org/10.1063/1.1571653
  6. B. S. Williams, S. Kumar, Q. Hu and J. L. Ren, Electron. Lett. 40, 431 (2004) https://doi.org/10.1049/el:20040300
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 39, 4425 (2000) https://doi.org/10.1364/AO.39.004425
  8. A. A. Kosterev and F. K. Tittel, IEEE J. Quantum. Electron. 38, 582 (2002) https://doi.org/10.1109/JQE.2002.1005408
  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science, 264, 553 (1994) https://doi.org/10.1126/science.264.5158.553
  10. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science, 295, 301 (2002) https://doi.org/10.1126/science.1066408
  11. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 84, 314 (2004) https://doi.org/10.1063/1.1641174
  12. H. Page, C. becker, A. Robertson, G. Glastre, V. Ortiz and C. Sirtori, Appl. Phys. Lett. 78, 3529 (2001) https://doi.org/10.1063/1.1374520
  13. 이혜진, Cheng Ming Lee, 한일기, 이정일, 김문덕, J. Kor. Vac. Soc. 16, 273 (2007) https://doi.org/10.5757/JKVS.2007.16.4.273

Cited by

  1. Ethical Issues in Nanomaterials Technology and Relevant Policy Recommendations vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.397