DOI QR코드

DOI QR Code

Geochemistry, Isotope Properties and U-Pb Sphene Age of the Jeongeup Foliated Granite, Korea

정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀 연대

  • 정연중 (한국기초과학지원연구원) ;
  • 정창식 (한국기초과학지원연구원) ;
  • 박천영 (조선대학교 자원공학과) ;
  • 신인현 (조선대학교 과학교육학부)
  • Published : 2008.12.30

Abstract

In this paper, we investigate the geochemical and isotope properties of the Jeongeup foliated granite (hereafter, the JFG) in the Jeongeup area, aiming at establishing the movement age of the Honam shear zone by U-Pb sphene geochronology. In the AMF diagram, the JFG corresponds to the calc alkalic rock series, and belongs to the magnesia region in the diagram of silica versus $FeO^{total}/(FeO^{total}+MgO)$. Additionally, in the Rb-Ba-Sr diagram, it is classified as granodiorite and anomalous granite with distinctive negative Eu-anomaly in the REE patterns. According to the silica and trace element contents, the JFG falls on the type VAG+syn-COLG, which implies that this was formed under the circumstance of compressional continental margin or volcanic arc. $^{143}Nd/^{144}Nd$ isotope ratios range from 0.511495 to 0.511783 and $T_{DM}$ are calculated to be about $1.68{\sim}2.36Ga$. U-Pb sphene ages of the JFG are $172.9{\pm}1.7Ma$ and $170.7{\pm}2.8Ma$, based on $^{238}U-^{206}Pb$ and $^{235}U-^{207}Pb$ ages, respectively. Presumably, the dextral ductile shearing in the Jeongeup area has occurred after 173 Ma.

본 연구는 정읍지역에 분포하는 정읍엽리상화강암의 지구화학 및 동위원소 특성을 파악하고 U-Pb 스핀 연대측정으로 구한 관입연대로 호남전단대의 전단작용시기를 밝히는데 있다. 본 암은 AMF삼각도의 칼크-알칼리암계열과 일치하며, 실리카와 $FeO^{total}/(FeO^{total}+MgO)$의 변화도에서 마그네시아 영역에 속한다. Rb-Ba-Sr삼각도의 분화정도에 따른 암상분류에서 화강섬록암과 이상화강암영역에 해당되며, 희토류원소분포에서는 뚜렷한 음(-)의 Eu이상을 나타낸다. 실리카와 미량원소를 이용한 마그마의 지체구조상의 판별도에서 본 암은 화상호형(VAG)과 대륙충돌형(syn-COLG)에 해당되며 판구조운동과 관련된 응력장이 작용하는 대륙주변부나 호상열도 환경 하에서 형성되었음을 시사한다. $^{143}Nd/^{144}Nd$ 비는 $0.511495{\sim}0.511783$의 범위이며, 결핍된 맨틀에 대한 모델연령($T_{DM}$)은 $1.68{\sim}2.36Ga$로 초기 원생대 시기의 맨틀에서 분리된 지각물질의 영향을 받았음을 시사한다. U-Pb 스핀연대는 $^{238}U-^{206}Pb$ 연대 $172.9{\pm}1.7Ma$$^{235}U-^{207}Pb$연대 $170.7{\pm}2.8Ma$로 조화로운 연대를 나타내어, 정읍주변지역의 전단작용 시기는 173 Ma 이후로 생각된다.

Keywords

References

  1. 김옥준, 1971, 남한의 신기화강암류의 관입시대와 지각변동. 광산지질, 4, 1-9
  2. 김용준, 박영석, 강상원, 1994, 호남전단대내에 분포하는 엽리상화강암류의 지질시대와 생성과정에 관한 연구. 자원환경지질, 27, 247-261
  3. 김용준, 이창신, 김희남, 1998, 전주-정읍지역에 분포하는 화성심성암류의 암석화학과 성인. 지구과학회지, 19, 56-77
  4. 나춘기, 이인성, 정재일, 1997a, 전주 및 순창지역에 분포하는 엽리상화강암류의 성인에 대한 연구(I)-암석지화학적 특성을 중심으로-. 한국지구과학회, 18, 480-492
  5. 나춘기, 이인성, 정재일, 1997b, 전주 및 순창지역에 분포하는 엽리상화강암류의 성인에 대한 연구(II)-Sr 및 Nd 동위원소적 특성을 중심으로-. 자원환경지질학회, 30, 249-262
  6. 박영석, 김종균, 김진, 2001, 영광-김제지역 화강암류의 암석화학적 연구. 자원환경지질학회, 34, 55-70
  7. 사공희, 2000, 남한의 현생이언 화강암류에 대한 U-Pb 스핀 지질연대와 알칼리 장석의 납 동위원소연구: 한반도의 지각의 진화에 대한 의미. 연세대학교 박사학위논문, 165 p
  8. 신인현, 박천영, 정연중, 2001, 전주지역 엽리상화강암의 암석화학 및 Sr.Nd 동위원소 조성. 한국지구과학회, 22, 1-9
  9. 이승렬, 이병주, 조등룡, 기원서, 고희재, 김복철, 송교영, 황재하, 최범영, 2003, 전주전단대 화강암류의 SHRIMP U-Pb 저어콘 연령측정: 호남전단대의 운동시기에 대한 고찰. 한국암석학회.한국광물학회 공동학술발표외 논문집, p. 55
  10. Bea, F., 1996, Residence of REE, Y, Th and U in granites and crustal protoliths, implications for the chemistry of crustal melts. Journal of Petrology, 37, 521-552 https://doi.org/10.1093/petrology/37.3.521
  11. Bouseily, A.M. and Sokkary, A.A., 1975, The relation between Rb, Ba and Sr in granitic rocks, Chemical Geology, 16, 207-219 https://doi.org/10.1016/0009-2541(75)90029-7
  12. Boynton, W.V., 1984, Geochemistry of the rare earth elements: Meteorite studies. In Henderson P. (ed.), Rare earth element geochemistry. Elsevier, USA, 63-114
  13. Cheong, C.-S., Kee, W.S., Jeong, Y.-J., and Jeong, G.Y., 2006, Multiple deformations along the Honam shear zone in southwestern Korea constrained by Rb-Sr dating of synkinematic fabrics: Implication for the Mesozoic tectonic evolution of northeastern Asia. Lithos, 87, 289-299 https://doi.org/10.1016/j.lithos.2005.06.015
  14. Cho, K,-H., Takagi, H., and Suzuki, K., 1999, CHIME monazite age of granitic rocks in the Sunchang shear zone, Korea: Timing of dextral ductile shear. Geoscience Journal, 3, 1-15 https://doi.org/10.1007/BF02910229
  15. Corfu, F. and Stone, D., 1998, The significance of titanite and apatite U-Pb ages: Constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area, northwestern Superior Province, Canada. Geochimica et Cosmochimica Acat, 17, 2979-2995
  16. DePaolo, D.J., 1981, A Neodymium and Strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86, 10470-10488 https://doi.org/10.1029/JB086iB11p10470
  17. DePaolo, D.J. and Wasserburg, G.J., 1976, Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249-252 https://doi.org/10.1029/GL003i005p00249
  18. Faure, G., 1986, Principles of isotope geology. John Wiley and Sons, USA, 589 p
  19. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.M., and Frost, C.D., 2001, A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42, 2033-2048 https://doi.org/10.1093/petrology/42.11.2033
  20. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548 https://doi.org/10.1139/e71-055
  21. Jahn, B-m., Zhou, X.H., and Li, J.L., 1990, Formation and tectonic evolution of southern China and Taiwan: Isotopic and geochemical constraints. Tectnophyscis, 183, 145-160 https://doi.org/10.1016/0040-1951(90)90413-3
  22. Jahn, B-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z., and Wang, Y., 2001, Highly evoloved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198 https://doi.org/10.1016/S0024-4937(01)00066-4
  23. Kim, C.B. and Turek, A., 1996, Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea. Geochemical Journal, 30, 323-338 https://doi.org/10.2343/geochemj.30.323
  24. Ludwig, K.R., 1999, Isoplot/Ex(v.2.06)-A geochronological tool kit for Microsoft Excel. Berkely Geochronology Center, Special Publication No. la, USA, 49 p
  25. Mason, B. and Moor, C.B., 1982, Principles of geochemistry. John Wiley and Sons, USA, 329 p
  26. Miyashiro, A., 1970, Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274, 321-355
  27. Na, C.K., 1994, genesis of granitoid batholiths of Okchon zone, Korea and its implications for crustal evolution. Ph. D. dissertation, University of Tsukuba, 154 p
  28. Pearce, J.A., Harris, N.B., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpertation of granitic rocks. Journal of Petrology, 25, 956-983 https://doi.org/10.1093/petrology/25.4.956
  29. Peucat, J.J., Vidal, P., Bernard-Griffiths, J., and Condie, K.C., 1988, Sr, Nd and Pb isotopic systematics in the Archaean low-to high-grade transition zone of southern India: Syn accretion vs. post-accretion granulites. The Journal of Geology, 97, 537-550 https://doi.org/10.1086/629333
  30. Richard, P., Shimizu, N., and Allegre, C.J., 1976, 143Nd/144Nd a natural tracer: An application to oceanic basalts. Earth and Planetary Science Letters, 31, 269-278 https://doi.org/10.1016/0012-821X(76)90219-3
  31. Scott, D.J. and St-Onge, M.R., 1995, Constrains on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determination. Geology, 23, 1123-1126 https://doi.org/10.1130/0091-7613(1995)023<1123:COPCTI>2.3.CO;2
  32. Teufel, S. and Heinrich, W., 1997, Partial restting of the U-Pb isotope system in monazite through hydrothermal experiments: An SEM and U-Pb isotope study. Chemical Geology, 137, 273-281 https://doi.org/10.1016/S0009-2541(96)00161-1
  33. Tilton, G.R. and Grunenfelder, M.H., 1968, Sphene: Uranium-Lead Ages. Science, 159, 1458-1461 https://doi.org/10.1126/science.159.3822.1458
  34. Turek, A. and Kim, C.B., 1995, U-Pb zircon ages of Mesozoic plutons in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Jouranl, 29, 243-258 https://doi.org/10.2343/geochemj.29.243
  35. Wasserburg, G.J., Jacobson, S.B., DePaolo, D.J., McCulloch, M.T., and Wen, T., 1981, Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimca Acta, 45, 2311-2323 https://doi.org/10.1016/0016-7037(81)90085-5
  36. Wu, F.-Y., Zhao, G., Wilde, S.A., and Sun, D., 2005, Nd isotope constraints on crustral formation in the North China Craton. Journal of Asian Earth Sciences, 24, 523-545 https://doi.org/10.1016/j.jseaes.2003.10.011
  37. Yanai, S., Park, B.S., and Otoh, S., 1985, The Honam shear zone (South Korea): Deformation and tectonic implication in the Far East. Scientific Papers of the College of Arts and Science. 35, 181-210

Cited by

  1. Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula vol.21, pp.2, 2012, https://doi.org/10.7854/JPSK.2012.21.2.173
  2. Temperature and Timing of the Mylonitization of the Leucocratic Granite in the Northeastern Flank of the Taebaeksan Basin vol.33, pp.5, 2012, https://doi.org/10.5467/JKESS.2012.33.5.434
  3. Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? vol.23, pp.1, 2014, https://doi.org/10.7854/JPSK.2014.23.1.017
  4. Characteristics of Nd Isotopic Compositions of the Phanerozoic Granitoids of Korea and Their Genetic Significance vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.279