DOI QR코드

DOI QR Code

On the Relationship between Typhoon Intensity and Formation Region: Effect of Developing and Decaying ENSO

태풍 강도와 발생지역의 상관성 연구: ENSO 발달과 소멸의 영향

  • Jang, Sae-Rom (Division of Earth Environmental System, Pusan National University) ;
  • Ha, Kyung-Ja (Division of Earth Environmental System, Pusan National University)
  • 장새롬 (부산대학교 지구환경시스템학부) ;
  • 하경자 (부산대학교 지구환경시스템학부)
  • Published : 2008.02.29

Abstract

This study investigates the influence of the developing and decaying El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) on the relation between typhoon intensity and its formation. From the long-tenn data of 57 years ($1950{\sim}2006$), we first defined the developing El $Ni{\tilde{n}}o$ years and the neutral years. During the developing El Nino years, the typhoon intensity has a strong relationship with formation region of the tropical cyclone, which results in an increase of the accumulated cyclone energy and intensity of energy of typhoon. During the developing El $Ni{\tilde{n}}o$ year based on $Ni{\tilde{n}}o$ 3.4 SST, the locations for the formation of the category 4+5 typhoon move to the eastward region. The genesis potential function and the low-level cyclonic vorticity have an important role on the formation of strong tropical cyclones, which eventually develop as a typhoon class. In this study, the dynamic potential (DP) function (Gray, 1977) and EOF 1 and EOF 2 time series (RMM 1 and RMM 2) of real-time multivariate MJO (Wheeler and Hendon, 2004) are used to measure the genesis potential and the low-level cyclonic vorticity, respectively. To investigate the influence of the developing and decaying ENSO, we defined the Type I case of the decaying El $Ni{\tilde{n}}o$ that turnovers to La Nina, and the Type II case of the recovering years to the neutral condition. During the decaying El $Ni{\tilde{n}}o$ years as Type I, the locations of the strong DP, RMM 1 and RMM 2 move to the westward more prominently to induce retard of the strong typhoon developing.

본 연구에서는 El $Ni{\tilde{n}}o$-Southern Oscillation(ENSO) 발달과 소멸의 영향에 따른 태풍 강도와 태풍 발생지역의 상관성을 살펴보았다. 1950년부터 2006년까지의 장기간 자료를 이용하였으며, 먼저 엘니뇨 발달해와 정상해를 정의하였다. 엘니뇨 발달해 동안에 태풍 강도와 태풍 발생지역이 높은 상관성을 나타내고 이는 누적 저기압 에너지와 태풍 에너지 강도가 증가한 결과이다. $Ni{\tilde{n}}o$ 3.4 지역의 해수면 온도를 기준으로 한 경우 엘니뇨 발달해에는, category 4+5에 해당하는 태풍의 발생지역이 동쪽으로 치우쳐 나타난다. 태풍 발생 잠재 함수와 하층의 저기압성 회전성은 태풍급에 해당하는 강도로 발달할 수 있는 강한 열대성 저기압의 발생에 중요한 요소가 된다. 본 논문에서는 역학적 잠재력[DP, Gray(1977)]과 MJO의 EOF 첫 번째 모드와 두 번째 모드의 시계열에 해당하는 RMM1, RMM2 (Wheeler and Hendon, 2004)를 이용하여 태풍 발생의 잠재함수와 대기 하층의 저기압성 회전성을 측정하였다. ENSO가 발달하는 해와 소멸하는 해와 영향을 찾아보기 위하여 엘니뇨가 소멸이 급격히 일어나 라니냐로 전환되는 Type I과 정상해로 회복하는 Type II를 정의하였다. Type I의 엘니뇨 소멸기간 동안에는 DP값과 RMM1, RMM2의 발달이 현저하게 서쪽으로 치우쳐 나타나며 강한 태풍의 발달을 지체시킴을 알 수 있었다.

Keywords

References

  1. Allan, J.C. and Komar, P.D., 2002, Extreme Storms on the Pacific Northwest Coast during the 1997-98 El Nino and 1998-99 La Nina. Journal of Coastal Research, 18 (1), 175-193
  2. Anthes, R.A., 1982, Tropical cyclones: Their evolution, structure and effects. American Meteorological Society, Boston, USA, 208 p
  3. Bell, G.D., Halpert, M.S., Kousky, V.E., Gelman, M.E., Ropelewski, C.F., Douglas, A.V., and Schnell, R.S., 2000, Climate assessment for 1999. Bulletin of the American Meteorological Society, 81, S1-S50 https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2
  4. Bjerknes, J., 1966, A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820-829 https://doi.org/10.1111/j.2153-3490.1966.tb00303.x
  5. Camargo, S.J. and Sobel, A.H., 2005, Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18, 2996-3006 https://doi.org/10.1175/JCLI3457.1
  6. Chan, J.C.L., 2000, Tropical cyclone activity over the western North Pacific associated with El Nino and La Nina events. Journal of Climate, 13, 2960-2972 https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2
  7. Chen, T.C., Weng, S.P., Yamazaki, N., and Kiehne, S., 1998, Interannual variation in the tropical cyclone activity over the western North Pacific. Monthly Weather Review, 126, 1080-1090 https://doi.org/10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2
  8. Clark, J.D. and Chu, P., 2002, Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418 https://doi.org/10.2151/jmsj.80.403
  9. Emanuel, K.A., 1987, The dependence of hurricane intensity on climate. Nature, 326, 483-485 https://doi.org/10.1038/326483a0
  10. Evans, J.L., 1993, Sensitivity of tropical cyclone intensity to sea surface temperature. Journal of Climate, 6, 1133-1140 https://doi.org/10.1175/1520-0442(1993)006<1133:SOTCIT>2.0.CO;2
  11. Gray, W.M., 1977, Tropical cyclone genesis in the Western North Pacific. Journal of the Meteorological Society of Japan, 55, 465-482 https://doi.org/10.2151/jmsj1965.55.5_465
  12. Gray, W.M., 1984, Atlantic seasonal hurricane frequency. Part 1: El Nino and 30 mb quasi-biennial oscillation influences. Monthly Weather Review, 112, 1649-1668 https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2
  13. Hastings, R.A., 1990, Southern Oscillation influences on tropical cyclone activity in the Australian / south-west Pacific region. International Journal of Climatology, 10, 291-298 https://doi.org/10.1002/joc.3370100306
  14. Hendon, H.H., Zhang, C., and Glick, J.D., 1999, Interannual variation of the Madden-Julian oscillation during austral summer. Journal of Climate, 12, 2538-2550 https://doi.org/10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2
  15. Holland, G.J., 1997, The maximum potential intensity of tropical cyclone. Journal of the Atmospheric Sciences, 54, 2519-2541 https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
  16. Kessler, T. and Kleeman, R., 2000, Rectification of the Madden-Julian Oscillation into the ENSO cycle. Journal of Climate, 13, 3560-3575 https://doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2
  17. Kessler, W.S., 2001, EOF representation of the Madden-Julian oscillation and its connection with ENSO. Journal of Climate, 14, 3055-3061 https://doi.org/10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2
  18. Lander, M.A. and Guard, C.P., 2001, Western North Pacific, North Indian Ocean, and Southern Hemisphere tropical cyclones of 1997. Monthly Weather Review, 129, 3015-3036 https://doi.org/10.1175/1520-0493(2001)129<3015:WNPNIO>2.0.CO;2
  19. Liebmann, B., Hendon, H.H., and Glick, J.D., 1994, The relationship between tropical cyclones of the western North Pacific and Indian Oceans and the Madden-Julian oscillation. Journal of the Meteorological Society of Japan, 72, 401-411 https://doi.org/10.2151/jmsj1965.72.3_401
  20. Lindzen, R.S. and Nigam, S., 1987, On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics. Journal of the Atmospheric Sciences, 44, 2418-2436 https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
  21. Madden, R.A. and Julian, P.R., 1972, Description of global-scale circulation cells in the Tropics with a 40-50 day period. Journal of the Atmospheric Sciences, 29, 1109-1123 https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
  22. McBride, J.L., 1981, Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. Journal of the Atmospheric Sciences, 38, 1117-1131 https://doi.org/10.1175/1520-0469(1981)038<1117:OAOTCF>2.0.CO;2
  23. Michaels, P.J., Knappenberger, P.C., and Davis, R.E., 2006, Sea-surface temperatures and tropical cyclones in the Atlantic basin, Geophysical Research Letters, 33, L09708, doi:10.1029/2006GL025 757
  24. Rasmusson, E.M. and Carpenter, T.H., 1982, Variations in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Nino. Monthly Weather Review, 110, 354-384 https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
  25. Reynolds, R.W. and Smith, T.M., 1994, Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929-948 https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
  26. Rui, H. and Wang, B., 1990, Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. Journal of the Atmospheric Sciences, 47, 357-379 https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2
  27. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., and Yamagata, T., 1999, A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363
  28. Seo, K.H. and Xue, Y., 2005, MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP Global Ocean Data Assimilation System. Geophysical Research Letters, 32, L07712, doi:10.1029 / 2005GL022511 https://doi.org/10.1029/2005GL022511
  29. Slingo, J.M., Rowell, D.P., Sperber, K.R., and Nortly, F., 1999, On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Nino. Quarterly Journal of the Royal Meteorological Society, 125, 583-609
  30. Smith, T.M. and Reynolds, R.W., 2004, Improved Extended Reconstruction of SST (1854-1997). Journal of climate, 17, 2466-2477 https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
  31. Takayabu, Y.N., Iguchi T., Kachi, M., Shibata, A., and Kanzawa, H., 1999, Abrupt termination of the 1997-98 El Nino in response to a Madden-Julian oscillation. Nature, 402, 279-282 https://doi.org/10.1038/46254
  32. Wang, B. and Chan, J.C.L., 2002, How strong ENSO events affect tropical storm activity over the Western North Pacific. Journal of Climate, 15, 1643-1658 https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  33. Wang, W. and McPhanden, M.J., 2001, Surface layer temperature balance in the equatorial Pacific during the 1997-98 El Nino and 1998-99 La Nina. Journal of Climate, 14, 3393-3407 https://doi.org/10.1175/1520-0442(2001)014<3393:SLTBIT>2.0.CO;2
  34. Webster, P.J., Moore, A., Loschnigg, J., and Leben, R., 1999, Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-1998. Nature, 401, 356-360 https://doi.org/10.1038/43848
  35. Wheeler, M.C. and Hendon, H.H., 2004, An all-season Real-Time Multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917-1932 https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
  36. Wu, G. and Lau, N.C., 1992, A GCM simulation of the relationship between tropical-storm formation and ENSO. Monthly Weather Review, 120, 958-977 https://doi.org/10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2
  37. Yu, L. and Rienecker, M., 2000, Indian Ocean warming of 1997-98. Journal of Geophysical Research, 105, 16923-16939 https://doi.org/10.1029/2000JC900068
  38. Zhang, C. and Gottschalck, J., 2002, SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. Journal of Climate, 15, 2429-2445 https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2

Cited by

  1. Dependency of typhoon intensity and genesis locations on El Niño phase and SST shift over the western North Pacific vol.109, pp.3-4, 2012, https://doi.org/10.1007/s00704-012-0588-z
  2. Development of Nonlinear Low-Order Climate Model and Simulated ENSO Characteristics vol.36, pp.7, 2015, https://doi.org/10.5467/JKESS.2015.36.7.611
  3. Precipitation variability in September over the Korean Peninsula during ENSO developing phase vol.46, pp.11-12, 2016, https://doi.org/10.1007/s00382-015-2776-x