DOI QR코드

DOI QR Code

Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm

  • Oh, Myoung-Kyu (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST) ;
  • Lee, Yong-Hoon (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST) ;
  • Choi, Sung-Chul (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST) ;
  • Ko, Do-Kyeong (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST) ;
  • Lee, Jong-Min (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST)
  • Received : 2007.11.26
  • Published : 2008.03.25

Abstract

We report the simple detection method of the small hydrocarbons, methane and ethane, by continuous-wave cavity ring-down spectroscopy near 1.67 ${\mu}m$ using an external cavity diode laser. The absorption lines of methane between 6002.48 $cm^{-1}$ and 6003.37 $cm^{-1}$ and ethane between 5955.65 $cm^{-1}$ and 5956.4 $cm^{-1}$ have been resolved and employed for the gas detection. The largest absorption cross sections were found to be 6.5$\times10^{-20}cm^2$ and 7.4$\times10^{-21}cm^2$ for methane and ethane, respectively, in each spectral range. The minimum detectable absorption limit of our spectrometer was 4.8${\times}10^{-9}cm^{-1}$/$\sqrt{Hz}$, which corresponds to the detection limits of 3 ppb/$\sqrt{Hz}$ and 27 ppb/$\sqrt{Hz}$ for methane and ethane, respectively. The near-IR continuous-wave cavity ring-down spectroscopic detection method of the small hydrocarbons can be applied for medical diagnosis and environmental monitoring as a fast and convenient method.

Keywords

References

  1. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum., vol. 59, pp. 2544-2551, 1988 https://doi.org/10.1063/1.1139895
  2. G. Berden, R. Peeters, and G. Meijer, “Cavity ringdown spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem., vol. 19, pp. 565-607, 2000 https://doi.org/10.1080/014423500750040627
  3. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C, vol. 101, pp. 100-142, 2005 https://doi.org/10.1039/b408909j
  4. M. R. Mccurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B, vol. 85, pp. 445-452, 2006 https://doi.org/10.1007/s00340-006-2365-0
  5. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B, vol. 81, pp. 705-710, 2005 https://doi.org/10.1007/s00340-005-1922-2
  6. K. D. Skeldon, G. M. Gibson, C. A. Wyse, L. C. McMillan, S. D. Monk, C. Longbottom, and M. J. Padgett, “Development of high-resolution real-time subppb ethane spectroscopy and some pilot studies in life science,” Appl. Opt., vol. 44, pp. 4712-4721, 2005 https://doi.org/10.1364/AO.44.004712
  7. K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. McMillen, P. J. McCann, and M. A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B, vol. 85, pp. 427-435, 2006 https://doi.org/10.1007/s00340-006-2301-3
  8. A. Popp, F. Muller, F. Kuhnemann, S. Schiller, G. von Basum, H. Dahnke, P. Hering, and M. Murtz, “Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator,” Appl. Phys. B, vol. 75, pp. 751-754, 2002 https://doi.org/10.1007/s00340-002-1047-9
  9. D. Halmer, S. Thelen, P. Hering, M. Murtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrosmeter,” Appl. Phys. B, vol. 85, pp. 437-443, 2006 https://doi.org/10.1007/s00340-006-2288-9
  10. G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Muller, A. Popp, and F. Kuhnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator caivtiy leak-out spectrometer,” Opt. Lett., vol. 29, pp. 797-799, 2004 https://doi.org/10.1364/OL.29.000797
  11. Jun Ye, Long-Sheng Ma, and John L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B, vol. 15, pp. 6-15, 1998 https://doi.org/10.1364/JOSAB.15.000006
  12. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum., vol. 71, pp. 347-353, 2000 https://doi.org/10.1063/1.1150206
  13. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B, vol. 85, pp. 355-364, 2006 https://doi.org/10.1007/s00340-006-2371-2
  14. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem., vol. 74, pp. 2003-2007, 2002 https://doi.org/10.1021/ac025511d
  15. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys., vol. 83, pp. 3991- 3997, 1998 https://doi.org/10.1063/1.367155
  16. HITRAN2000 database, www.hitran.com
  17. Chuji Wang, Susan T. Scherrer, and Delwar Hossain, “Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer,” Applied Spectroscopy, vol. 58, pp. 784-791, 2004 https://doi.org/10.1366/0003702041389193
  18. B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, “Trace detection of methane using continuous wave cavity ring-down spectroscopy at $1.65{\mu}m$”, Phys. Chem. Chem. Phys., vol. 4, pp. 5960-5965, 2002 https://doi.org/10.1039/b208486b
  19. A. W. Liu, S. Kassi and A. Campargue, “High sensitivity cw-cavity ring down spectroscopy of $CH_4$ in the $1.55{\mu}m$ transparency window”, Chem. Phys. Lett., vol. 447, pp. 16-20, 2007 https://doi.org/10.1016/j.cplett.2007.08.092
  20. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys., vol. 99, pp. 6287-6301, 1993 https://doi.org/10.1063/1.465866
  21. H. S. Moon , W. K. Lee, and H. S. Suh, “Saturated Absorption Spectroscopy of $^{12}C_2H_2$in the Near Infrared Region”, Journal of the Optical Society Korea, vol. 8, No. 1, pp. 1-5, 2004 https://doi.org/10.3807/JOSK.2004.8.1.001
  22. L. G. Smith, “The Infra-Red Spectrum of $C_2H_6$,” J. Chem. Phys., vol. 17, pp. 139-167, 1949 https://doi.org/10.1063/1.1747206
  23. EDGAR 32FT2000. Emission Database for Global Atmospheric Research, version 3.2, fast track 2000 project, www.mnp.nl/edgar/model/v32ft2000edgar
  24. NOAA ESRL GMD Carbon Cycle, www.cmdl. noaa. gov/ccgg
  25. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B, vol. 85, pp. 421-426, 2006 https://doi.org/10.1007/s00340-006-2280-4
  26. M. Murtz, “Breath diagnostics using laser spectroscopy,” Optics & Photonics News, January 2005, pp. 30-35, 2005

Cited by

  1. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68µm vol.159, 2015, https://doi.org/10.1016/j.jqsrt.2015.03.010
  2. Measurement and analysis of water vapor inside optical components for optical fiber H_2O sensing system vol.52, pp.26, 2013, https://doi.org/10.1364/AO.52.006445
  3. A Compact Tunable VCSEL and a Built-in Wavelength Meter for a Portable Optical Resonant Reflection Biosensor Reader vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.395
  4. MEMS gas preconcentrator filled with CNT foam for exhaled VOC gas detection vol.9, pp.1, 2015, https://doi.org/10.1007/s13206-014-9106-y